
Vol.11/No.1 (2019) INTERNETWORKING INDONESIA JOURNAL 55

 ISSN: 1942-9703 / CC BY-NC-ND

Abstract— Vissim is a simulation software that has many uses.

With its complete features, simulation of traffic conditions can be
done to represent real world conditions. However, the limitations
of Vissim's algorithm become an obstacle for developing the right
traffic scheme. In order to implement custom algorithms, users
need to bridge Vissim with applications that can process complex
mathematical equation. It can be done using one of Vissim's
feature called Vissim-COM interface. The use of Vissim-COM is
crucial when users have to include custom algorithms that are
not available on the Vissim GUI. Unfortunately, the use of
Vissim-COM is a very rare thing done by the traffic engineer.
Therefore, clear explanation on how to use Vissim-COM
interface has also become a rare thing to find. This paper will
provide some explanation on how to use Vissim-COM, including
case studies of traffic control using custom algorithm to test the
Vissim-Matlab interaction. This case study will use the traffic
condition of Simpang Dago, Bandung. The use of custom
algorithm was very effective to reduce the queue length, the
custom algorithm result showed that the queue length of all 4
links were between 18-36 meters. Meanwhile, the queue length of
the same links using traditional fixed time control were between
11-173 meters.

Index Terms— Vissim, Matlab, Traffic Engineering,
Simulation, COM Interface

I. INTRODUCTION
RAFFIC management is one way to provide a better
traffic condition. Good traffic management always starts
by designing the right scenario. However, the

implementation of this traffic scenario is sometimes
constrained by the difficulty of conducting real traffic
engineering. Traffic engineering that directly applied on the
streets often have disadvantages such as: the need for
socialization to road users, limited time available, large costs,
and the risk of failure that can lead to severe congestion.

A way that can overcome these shortcomings is by doing
the engineering in the simulation software. Simulation
software can provide an approach to the various conditions
that occur in the streets. There are many kinds of simulation
software that can be used according to user needs. Based on
network size, traffic analysis is divided into macroscopic,

Manuscript received June 10, 2018.
S. A. Ramadhan is with the Department of Instrumentation and Control

Engineering Institut Teknologi Bandung, Indonesia (phone: +62 822 9920
6605; e-mail: satriaantariksa@students.itb.ac.id).

E. Joelianto, is with the Department of Instrumentation and Control
Engineering Institut Teknologi Bandung, Indonesia (Corresponding author e-
mail: ejoel@tf.itb.ac.id).

H. Y. Sutarto is with the East Continent Research Center, Indonesia (e-
mail: hytotok@gmail.com).

mesoscopic, and microscopic levels. Microscopic analysis is
the most accurate level of analysis because it takes into
consideration many small factors such as vehicle volume,
turning ratio, speed distribution, and driving behavior.

There are several traffic simulation softwares that can be
used, such as Vissim or SUMO. Airulla et. al. [1] performs the
implementation of Mix-Max algorithm using MPC on the
Surabaya traffic network using SUMO. But the use of SUMO
has its own complexity. Because it is a Linux-based program,
the whole process of its use must be done manually by writing
the program. Vissim offers ease of use over SUMO, because
Vissim already has its own user interface, so users do not need
to write the program manually.

PTV Vision is a company that develops various traffic
simulation software. There are various types of software
provided by PTV Vision ranging from macroscopic to
microscopic level. PTV Vissim is one of the software
developed by PTV Vision, which runs traffic simulation at
microscopic level.

PTV Vissim is the leading microscopic simulation program
for modeling multimodal transport operations and belongs to
the Vision Traffic Suite software. Realistic and accurate in
every detail, Vissim creates the best conditions for people to
test different traffic scenarios before their realization. Vissim
is now being used worldwide by the public sector, consulting
firms and universities. [2]

Vissim has various features, such as traffic flow modeling,
traffic light engineering, vehicle queue length analysis,
pedestrian simulation, and also script-based modeling. Script-
based modeling is one of Vissim's features that is very useful
in the development of traffic control algorithms. Through
COM (Component Object Model) Interface, users can connect
Vissim with various programming language applications such
as C ++, Java, Phyton, Matlab, VBA, and others. Through this
feature, users have the freedom to apply additional algorithms
that are not available in Vissim.

There have been many studies that utilize Vissim to
represent traffic conditions of real conditions [3] [4] [5] [6],
but this research is still limited to the use of algorithms that is
available within the Vissim GUI. The use of Vissim-COM is
crucial when users have to include custom algorithms that are
not available on the Vissim GUI. Knowledge on how to use
Vissim-COM becomes something that must be mastered by
researchers who want to develop algorithms with complex
mathematical relationships.

However, the use of Vissim-COM is a very rare thing done

Simulation of Traffic Control Using Vissim-
COM Interface

Satria A. Ramadhan, Endra Joelianto, and Herman Y. Sutarto

T

56 INTERNETWORKING INDONESIA JOURNAL RAMADHAN ET AL.

by the traffic engineer. Seen from the lack of publications that
utilize this feature. This is exacerbated by Vissim's policy,
which has been limiting the help feature of Vissim-COM since
the release of Vissim version 6.0.

There are not many publications that use the Vissim-COM
feature as a way to connect Vissim with other programming
application. Tettamanti et al [7] in 2012 published his study of
the implementation of the MPC minimax algorithm utilizing
the Vissim-Matlab relationship. Tettamanti also made several
publications describing the mechanism of Vissim-COM's use
in detail [8][9]. Another study using the Vissim-COM feature
was performed by Maria Solomons who applied the
backpressure algorithm to Vissim, using Matlab as a data
processing application [10]. Although there are some papers
that use Vissim-COM interaction, only publications from
Tettamanti in 2015 [8][9] clearly address the stages in
establishing the Vissim-COM connection.

In this paper, we will describe the steps carried out in the
network modeling process and traffic control through Vissim-
Matlab interaction, utilizing the COM interface feature. In
section II will be discussed about the use of Vissim, the basics
of Vissim COM programming, as well as the hierarchical
structure contained in Vissim COM. Furthermore, in section
III we will describe the traffic model design scheme in Vissim.
Section IV will present a case study of traffic control using
custom algorithm to test the Vissim-Matlab interaction

II. VISSIM AND COM INTERFACE

A. Introduction to Vissim COM Interface
Vissim as a traffic simulation software already provides

various features that make it a very complete simulation
software. Through Vissim, users can conduct in-depth analysis
of the junction geometry, planning infrastructure development,
capacity management, development of traffic control systems,
to simulate the development of public transport.

As a simulation software, Vissim also equips itself with
various additional modules (APIs), which can help users
integrate Vissim with various applications. One of the most
useful APIs is the COM Interface. Some things that can be
used through COM Interface are [2]:

• Preparation and postprocessing of data

• Efficiently controlling the sequence for the
examination of scenarios

• Including control algorithms which you have defined
• Access to all network object attributes

Through COM Interface, users can run and access Vissim
objects from other applications. COM can be used by using
various programming environments and programming
languages such as VBA in Ms. Excel, Visual C ++, Python,
Delphi, and Matlab. Through the use of COM Interface, users
can manipulate the various objects and attributes contained in
Vissim dynamically.

COM Interface is an exclusive feature that can only be
accessed on Vissim Full Version. Users must register Vissim
as COM-server on the computer's operating system, so other
applications can access COM objects.

B. Vissim-COM Object Model
Vissim-COM implements a very strict hierarchical system in

its use. Figure 1 shows the hierarchical system contained in
Vissim-COM. As can be seen in the picture, the object in the
hierarchy has a head called IVissim, which represents the
Vissim object. There are 5 main objects under IVissim, which
is ISimulation, INet, IGraphics, IPresentation, and
IEvaluation.

 ISimulation is an object used to access all attributes related
to Vissim simulation parameters such as time period, step
time, simulation speed, etc. INet is the largest object because it
is used to access attributes related to the networks such as
Link, Vehicle Input, Driving Behaviors, etc. IEvaluation is
used to access evaluation parameters. IPresentation is used to
access the 3D serving attribute. And the last object, IGraphics
is used to access attributes related to the Vissim user interface.

All sub attributes under this object can be viewed in the
offline help Vissim (Help \ COM Help), or can also be
accessed through other applications by giving the command:

{Vissim-COM object name}.fields
In order to access a Vissim object, a hierarchy of objects

must be followed. IVissim is the highest object of the model,
followed by sub-objects like INet, to access attributes in ILink,
INode, IAreas, etc. Tamás Tettamanti [8][9] published the
interaction process between Vissim and COM for Matlab in
detail, as well as other types of programming languages. In
that publication, Tettamanti gives some examples of using the
command to control Vissim via Matlab GUI.

Fig. 1. Hierarchical structure in Vissim COM Interface [11]

Vol.11/No.1 (2019) INTERNETWORKING INDONESIA JOURNAL 57

 ISSN: 1942-9703 / CC BY-NC-ND

III. MODELLING THE NETWORK
In order to use COM Interface, users must first build a

Vissim network model that will be used in COM Interface.
This network will then become the basis for the use of COM
Interface. The development of the required model includes the
making of roads, route choices, determining the number of
vehicles and their composition, to the control of green light
allocation of each link.

In this paper, the application to be associated with Vissim is
Matlab. The use of Matlab is based on the reasons for its ease
of operation, the completeness of its features, and its ability to
run specific algorithms.

In general, the steps in the process of using Vissim - Matlab
interactions are shown in Figure 2.

Start

Generating overal
traffic network

through Vissim GUI

Connecting Vissim
to Matlab

Implementing
specific command/

algorithm for
Vissim through

Matlab GUI

Running the
simulation from

Matlab

End

Fig. 2. Flowchart of Vissim - Matlab interaction process

Connecting Vissim to Matlab
To connect Matlab with Vissim, create a new COM server

on Matlab by entering the command:
vis=actxserver(‘VISSIM.vissim.{Vissim Version}’)
The use of vis in the above command is to define IVissim

which will then be considered the head of the COM hierarchy.
By giving actxserver command, Matlab will automatically
connect with Vissim.
 The user can then find various functions that can be done
through COM interaction on the IVissim object by giving the
command:
 vis.methods
It will show a list of functions that can be used as in Figure 3:

Fig. 3. List of methods available for vis [4]

To find sub-objects under the IVissim object, the user can
use the command:

vis.fields
The use of the command will bring up five main objects, that
is INet, ISimulation, IEvaluation, IGraphics, and
IPresentation.

Fig. 4. List of fields available for vis [4]

Loading the network
Network models that have been previously created, must be

defined to be recognized by Matlab. When creating a network
model, Vissim will generate two files with the .inpx extension,
and .layx. By using the 'LoadNet' and 'LoadLayout' functions,
define the location of the two files to be accessed by Matlab,

vis.LoadNet(‘{File Path}\{File Name}.inpx’)
vis.Loadlayout(‘{File Path}\{File Name}.layx’)

If the definition process runs correctly, when the command is
executed, automatically the layout that has been created will
open in Vissim.
 In order for the command-generation process in Matlab to
run smoothly and well organized, it is recommended to define
the 5 main objects of IVissim at the beginning by using the
command:

sim=vis.Simulation;
net=vis.Net;
eval=vis.Evaluation;
graph=vis.Graphics;
pres=vis.Presentation;

Setting the simulation parameter
 Through the use of Vissim-COM users have the freedom to
obtain or enter values into objects available in Vissim via
Matlab. The object's retrieval process can use the 'get'
command, whereas the value setting uses the 'set' command.
In order to access the desired attributes, the user must use the
command 'AttValue'. Therefore, the command used to retrieve
and enter data is:
 sim.get(‘AttValue’, {‘attribute’};
 sim.set(‘AttValue’, {‘attribute’}, {value};

Once the previously created network model can be
recognized by Matlab, the user can proceed by inputting the
simulation parameters via the Matlab command. This list of

58 INTERNETWORKING INDONESIA JOURNAL RAMADHAN ET AL.

simulated objects can be viewed in the offline help Vissim
(Help \ COM Help), or by entering a command:

sim.fields
Users have the freedom to specify values of simulation

parameters via Matlab, or directly from Vissim GUI.
Setting network attributes
 The INet object is the object with the most sub-objects,
because INet is the parent of all attributes associated with the
model parameters. Through the INet object, the user can
retrieve all the information of each link, provide the input of
the number of vehicles, control all sensors and detectors, and
make state changes to traffic lights. Just like ISimulation,
users can also find a list of available INet objects through the
command:
 net.fields

Figure 5 shows the Matlab response when the user requests
a list of objects under the INet object.

To access the sub-objects, the definitions in Matlab are
done by writing the main object, followed by the desired sub-
object. For example, to access VehicleInput, the command that
is written is:
 vehin=net.VehicleInput;
 Sometimes, some specific objects are marked by a certain
number code in the Vissim GUI, to access that specific object,
the ItemByKey function can be used. For example, to access
'vehin' at a particular location, the user should pay attention to
the number code corresponding to 'vehin' as desired. So the
command is written:
 vehin1=vehin.ItemByKey(1);

Fig. 5. List of object fields available for net

 Most attributes under the INet object can only be accessed
when the simulation has run, this is because Vissim needs to
run the simulation to generate the required network related
data. In the following section, a variety of controller
algorithms will require various data generated on this INET
object.
Running the simulation
 Vissim has three ways to run simulations, RunContinuous,
RunSingleStep, and RunMulti. RunContinuous will make the
simulation run without pause, this way will make the
simulation in Vissim running smoothly without pause.

However, the user can only access the simulation parameters
after the simulation is completed. Instead, RunSingleStep will
make the simulation truncated every time interval. In this way,
the simulation display in Vissim will run disjointedly.
However, users can access simulated data when simulation
runs, because Vissim can provide parameter values during
pause. RunSingleStep can be run with command 'for' on
Matlab. So the command used to run the simulation would be:

for i=0:(period_time* time_step)
 sim.RunSingleStep;
 end
Users can add various custom algorithms to the 'for' loop if
they want to apply it during simulation.
 The above stage is the last stage in the general process of
creating COM syntax via Matlab. When the user runs the
simulation via the 'Run' button in Matlab, the whole process
will run automatically, until the user-defined simulation period
is fulfilled.

IV. CASE STUDY
This case study uses the Simpang Dago network model,

located in Bandung, Indonesia. In this case study, a traffic
light controller algorithm will be implemented into the
network model. Figure 6 shows the full network model. This
intersection consists of 4 links, with each link is controlled
using a traffic light. The algorithm will be applied into a 4
phase red light system. The custom algorithm will be
compared with fixed time cycle control to see the difference of
handling performance.

Fig. 6. Location of studied area

The model has 4 vehicle input locations:
• North = 1000 Veh/hour
• East = 2500 Veh/hour
• South = 1200 Veh/hour
• West = 2500 Veh/hour

Simulation period is set to be 3600s, while the algorithm
will be implemented every 30 second. Green time allocation
for Fixed Time controller is 30 seconds for every links. The
sequence of the green light on the Fixed Time controller is N-
E-W-S.

 The custom algorithm to be implemented into this network
is to set the green light priority to the link that has the longest
queue. To implement this algorithm, a queue length sensor is
required, where the value of the queue length will be the input
to the algorithm. The process flow of this algorithm is
depicted in Figure 7.

Vol.11/No.1 (2019) INTERNETWORKING INDONESIA JOURNAL 59

 ISSN: 1942-9703 / CC BY-NC-ND

Start

Calculate queue
length of link 1, 2, 3,

4

Compare the queue
length of every link

Set the green time for
the link with longest

queue

Verify every 30
second

End

Fig. 7. Flowchart of the studied algorithm

As described in the previous chapter, the steps of command
generation are connecting Vissim with Matlab, defining the
layout location, defining the five main objects of IVissim, and
assigning the simulation parameter values. Then the command
is made:
 vis=actxserver('Vissim.vissim.800');

 access_path=pwd;

vis.LoadNet([access_path '\Dago.inpx']);
vis.LoadLayout([access_path '\Dago.layx']);

sim=vis.Simulation;
net=vis.Net;
eval=vis.Evaluation;
graph=vis.Graphics;
pres=vis.Presentation;

period_time=3600;
time_step=3;
sim.set('AttValue', 'SimPeriod', period_time);
sim.set('AttValue', 'SimRes', time_step);

 Then, it is necessary to define the length of the queue sensor
to be used. There are four queue sensors for each link,
symbolized by SI, DA, DU, and DB. The QueueCounter
sensor is under the INet object, so the command that is written
is:

que=net.QueueCounters;
SI=que.ItemByKey(1);
DA=que.ItemByKey(2);
DU=que.ItemByKey(3);
DB=que.ItemByKey(4);

 In order to control traffic lights, it is also necessary to
define the traffic lights to be used, along with the signal
groups that have been installed on each lamp. Signal group
will only serve as a description that distinguishes one lamp
with other lights. For the length of the fixed green light will be

determined by the algorithm. SignalControllers object is under
the INet, and ItemByKey function will help select
SignalController number 1. The Signal group (SGs) is under
the SignalController sub-object number 1, where there will be
4 signal groups representing traffic lights on each link. The
written command is:

scs=net.SignalControllers;
sc=scs.ItemByKey(1);
sgs=sc.SGs;
sg_1=sgs.ItemByKey (1);
sg_2=sgs.ItemByKey (2);
sg_3=sgs.ItemByKey (3);
sg_4=sgs.ItemByKey (4);

 Next is the implementation of the algorithm inside the 'for'
loop. The algorithm is designed to set the green light priority
every 30 seconds, so it is necessary to add the 'verify'
command to the algorithm. To get the length of the queue
recorded by the sensor, use the command 'get' and 'AttValue'.
Then the command used is:
 verify=30;

for i=0:(period_time* time_step)
 sim.RunSingleStep;

 if rem(i/time_step,verify)==0
 QL_B=SI.get('AttValue', 'QLen(Current,Last)')
 QL_U=DA.get('AttValue', 'QLen(Current,Last)')
 QL_T=DU.get('AttValue', 'QLen(Current,Last)')
 QL_S=DB.get('AttValue', 'QLen(Current,Last)')
 --------[ALGORITHM]-------------------------------
 end
 end
 Through the command above, we have obtained the queue
length value of each link stored in the variable QL_B, QL_U,
QL_T, QL_S. These four variables are compared every 30
seconds, and the link with the longest queue will be defined as
Mx_Press. Thus, the algorithm used to complete the 'for' loop
above is:

arr = [QL_B,QL_U,QL_T,QL_S];
 arr_name = {'QL_B','QL_U','QL_T','QL_S'};
 [maximum,ind]=max(arr);
 Mx_Press=arr_name{ind}
 if Mx_Press == 'QL_U'
 sg_1.set('AttValue', 'State', 3);
 sg_2.set('AttValue', 'State', 1);
 sg_3.set('AttValue', 'State', 1);
 sg_4.set('AttValue', 'State', 1);
 elseif Mx_Press == 'QL_B'
 sg_1.set('AttValue', 'State', 1);
 sg_2.set('AttValue', 'State', 3);
 sg_3.set('AttValue', 'State', 1);
 sg_4.set('AttValue', 'State', 1);
 elseif Mx_Press == 'QL_S'
 sg_1.set('AttValue', 'State', 1);
 sg_2.set('AttValue', 'State', 1);
 sg_3.set('AttValue', 'State', 3);
 sg_4.set('AttValue', 'State', 1);
 elseif Mx_Press == 'QL_T'
 sg_1.set('AttValue', 'State', 1);
 sg_2.set('AttValue', 'State', 1);
 sg_3.set('AttValue', 'State', 1);
 sg_4.set('AttValue', 'State', 3);

60 INTERNETWORKING INDONESIA JOURNAL RAMADHAN ET AL.

V. RESULTS
Based on the results of the above custom algorithm

implementation, the result shows the difference of control
performance between custom algorithm and fixed time
control. Table 1 below shows the comparison of queue length
in custom algorithm with fixed time. It can be seen in the table
that the queue distribution on the custom algorithm is more
evenly distributed on each link. Contrast with fixed time
control that shows long queues only on west links and east
links, which has the largest flow.

TABLE I

COMPARISON BETWEEN CUSTOM ALGORITHM AND FIXED TIME CONTROL
Custom Algorithm S E W N
Average Queue (m) 26.126 36.008 27.147 18.66
Stdev (m) 14.184 19.687 16.229 11.219
Max Queue (m) 65.16 123.34 82.89 52.85
Green Phase Count 20 37 38 21

Fixed Time S E W N
Average Queue (m) 16.142 170.87 173.32 11.247
Stdev (m) 8.383 38.135 36.868 6.968
Max Queue (m) 53.07 207.38 212.1 39.43
Green Phase Count 29 29 29 29

Other results obtained from the implementation of this
algorithm is the number of green lights received by each link.
The use of fixed time control will provide an even distribution
of green light for all links, which is 29 times of green light in
3480 seconds operation. Meanwhile, the use of custom
algorithm has set more green allocation on the west link and
east link. This is the reason why custom algorithm provides
more uniform distribution of queue length in custom
algorithm.

Fig. 8. Fixed time control

Based on the visualization showed in Figure 8, it showed
that the algorithm has successfully been applied in Vissim.
From the Figure 8 we could see that the fixed time control
gives bad result as the queue length reached its following
intersection.

Different result showed in Figure 9, where the custom
algorithm is applied. By using the same set data, and analyzed
at the same time period, the algorithm showed a much better
condition. Therefore, we could say that the algorithm that was
written in Matlab has been successfully applied in Vissim

GUI. Later, the other intersection also will be controlled using
the same algorithm, to provide global traffic control condition.

Fig. 9. Custom algorithm control

From the case study provided above, we can see that
Matlab-Vissim interaction makes it easy for traffic algorithm
developers to apply the algorithm they have created. Going
forward, we hope more and more researchers started to use
this Vissim-COM feature, so that more traffic control
algorithms can be implemented in the real world.

VI. CONCLUSION
We have described the method of using Vissim-COM to
connect Matlab with Vissim. Through the use of Vissim-
COM, users can implement a variety of specific algorithms
that are not available in Vissim-GUI Based on the given case
study, it showed that Vissim-Matlab interaction has been
successfully performed, with successful custom algorithms
implemented in Vissim-GUI. Based on the simulation results,
the use of custom algorithms has successfully lowered the
queue length, and provides a more uniform distribution of
queue length across all links.

Vissim is a simulation software that has many uses. With its
complete features, simulation of traffic conditions can be done
to near real world conditions. However, the limitations of
Vissim's algorithm become an obstacle for developing the
right traffic scheme. Through the use of COM Interface, these
limitations can be overcome by connecting Vissim with a
programming application that can implement specific
algorithms. From the case studies presented in the paper, we
could see that the Vissim-Matlab interaction has been
successfully done. Vissim could recognize the custom
algorithm that we implement from Matlab, through the use of
Vissim-COM interface.

ACKNOWLEDGMENT
We would like to thank the Department of Physics

Engineering, Institut Teknologi Bandung, which has provided
an opportunity to conduct research on traffic engineering. This
paper was supported by the Ministry of Research, Technology
and Higher Education of the Republic of Indonesia under the
Applied Higher Education Excellent Research University,
Bandung Institute of Technology, Bandung, Indonesia 2018.
We would also like to thank the Department of Civil
Engineering of Institut Teknologi Bandung, and Pusat Litbang

Vol.11/No.1 (2019) INTERNETWORKING INDONESIA JOURNAL 61

 ISSN: 1942-9703 / CC BY-NC-ND

Jalan dan Jembatan Bandung (PUSJATAN) on the permission
of using the Vissim Full Version.

REFERENCES
[1] E. Joelianto, H.Y. Sutarto, D.G. Airulla, and M. Zaky, "Design and

Simulation of Traffic Light Control System at Two Intersections Using
Max-Plus Model Predictive Control," To Appear International Journal
of Artificial Intelligence (2019).

[2] PTV, “PTV Vissim 8 User Manual,” PTV Planung Transport Verkehr
AG, Karlsruhe: PTV Planung Transport Verkehr AG., 2016.

[3] Fellendorf, Martin, "VISSIM: A microscopic simulation tool to evaluate
actuated signal control including bus priority," 64th Institute of
Transportation Engineers Annual Meeting, Springer, 1994.

[4] Park, Byungkyu, and J. Schneeberger, "Microscopic simulation model
calibration and validation: case study of VISSIM simulation model for a
coordinated actuated signal system," Transportation Research Record:
Journal of the Transportation Research Board 1856, pp. 185-192, 2003.

[5] Huang, Fei, et al., "Identifying if VISSIM simulation model and SSAM
provide reasonable estimates for field measured traffic conflicts at
signalized intersections," Accident Analysis & Prevention, vol. 50, pp.
1014-1024, 2013.

[6] Mathew, Tom V., and Padmakumar Radhakrishnan, "Calibration of
microsimulation models for nonlane-based heterogeneous traffic at
signalized intersections," Journal of Urban Planning and Development,
vol. 136.1, pp. 59-66, 2010.

[7] Tettamanti, Tamás, and István Varga, "Development of road traffic
control by using integrated VISSIM-MATLAB simulation
environment," Periodica Polytechnica. Civil Engineering, vol. 56.1: 43.
2012.

[8] T. Tettamanti and M. T. Horvath, “A practical manual for Vissim COM
programming in Matlab 2nd edition,” Budapest University of
Technology and Economics, Budapest, rep., 2015.

[9] T. Tettamanti, “A practical manual for Vissim COM programming in
Matlab 1st edition,” Budapest University of Technology and Economics,
Budapest, rep., 2015.

[10] Salomons, A. Maria, and Andreas Hegyi. "Intersection Control and
MFD Shape: Vehicle-Actuated versus Back-Pressure Control," IFAC-
PapersOnLine 49.3 , pp. 153-158., 2016.

[11] PTV, “Introduction to the PTV Vissim 8 COM API.” PTV Planung
Transport Verkehr AG, Karlsruhe: PTV Planung Transport Verkehr
AG., 2016.

[12] Karaboga, Dervis. “An idea based on honey bee swarm for numerical
optimization,” Vol. 200. Technical report-tr06”, Erciyes University,
Engineering Faculty, Computer Engineering Department, 2005.

Satria A. Ramadhan received his B.S from the Department of Physics
Engineering, Universitas Gadjah Mada. Later, he finished his master degree at
Institut Teknologi Bandung, majoring in Instrumentation and Control System.
From 2014-2017, he was with Enerbi, a non-profit organization related to the
renewable energy infrastructure development for rural areas. He joined Pusat
Riset Energi, Ltd (https://rce.co.id/) in 2018, and is assigned as Junior
Researcher to study about the implementations of traffic management system
in Indonesia. His research interests are the implementations of control theories
for traffic management system, and also its validation method such as
Macroscopic Fundamental Diagram (MFD). He has also interest in
community development, and also studies related to energy management
system.

Endra Joelianto (M’01) received his B.Eng. degree in Engineering Physics
from Bandung Institute of Technology (ITB), Indonesia in 1990, and his
Ph.D. degree in Engineering from The Australian National University (ANU),
Australia in 2002.
 He was a Research Assistant in the Instrumentation and Control
Laboratory, Department of Engineering Physics, Bandung Institute
Technology, Indonesia from 1990-1995. Since 1999, he has been with the
Department of Engineering Physics, Bandung Institute of Technology,
Bandung, Indonesia, where he is currently a Senior Lecturer. He has been a
Senior Research Fellow in the Centre for Unmanned System Studies
(CENTRUMS), Bandung Institute of Technology, Bandung, Indonesia since
2007, National Centre for Sustainable Transportation Technology and
National Centre for Security and Defence at Bandung Institute of Technology,

Bandung, Indonesia since 2016. He was a Visiting Scholar in the
Telecommunication and Information Technology Institute (TITR), University
of Wollongong, NSW, Australia in February 2002. He was a Visiting Scholar
in the Smart Robot Center, Department of Aerospace and Information
Engineering, Konkuk University, Seoul, Korea in October 2010. His research
interest includes hybrid control systems, discrete event systems,
computational intelligence, robust control, unmanned systems, intelligent
automation and industrial internet of things. He edited one book on intelligent
unmanned systems (Springer) 2009, published one book on linear quadratic
control (ITB-Press) 2017 and published more than 125 research papers.

Herman Y. Sutarto received a B.S and M.S. from the Department of
Electrical Engineering with major in Control System, Institut Teknologi
Bandung (ITB), Indonesia. He earned Ph.D degree in Electromechanical
Engineering from Universiteit Gent, Belgium through European Project FP-7.
He visited TU-Berlin, INRIA and Supélec-France, TU-Delft and CWI-
Netherland, Universidad Zaragoza, Universita di Verona, University of
Cagliari, Technical University of Eindhoven. From 1992 -2000, he was with
the Indonesian Aircraft Industries as a research engineer developing flight
control system for flexible aircraft. In the period of 2001 -2008, he joined the
Vibration and Control Laboratory at Department of Aeronautics and
Astronautics ITB as a research associate. Starting from 2016 he is a research
director at Pusat Riset Energi, Ltd (https://rce.co.id/), a research company
focuses on developing an intelligent infrastructure for energy industries from
upstream to downstream process. He is also with the Department of Electrical
Engineering, Institute of Technology Harapan Bangsa as a lecturer. His
research interests are control of stochastic system with application to control
of aerospace vehicles, of drilling automation and of large-scale urban traffic
networks. He has also strong interest in complexity studies for living system,
particularly related to quantum physical system.

https://rce.co.id/

	I. INTRODUCTION
	II. VISSIM AND COM INTERFACE
	A. Introduction to Vissim COM Interface
	B. Vissim-COM Object Model

	III. Modelling the network
	IV. Case Study
	V. Results
	VI. Conclusion
	Acknowledgment
	References

