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Abstract—The rapid advancement of 3D reconstruction
technology has created significant opportunities across various
fields, yet its complexity remains a barrier to widespread
adoption, particularly for novice users. This research evaluates
and compares traditional and modern 3D reconstruction
methods to assess their effectiveness in terms of reconstruction
quality and processing efficiency. Classical approaches such as
COLMAP and VisualSfM are analyzed alongside the neural
network-based Instant-NGP to highlight their respective
strengths and limitations. A comparative study is conducted
based on both objective metrics and subjective human
perception, ensuring a comprehensive evaluation of their
performance. Additionally, user feedback is collected to assess
ease of use and accessibility, providing insights into potential
improvements for broader adoption. The findings indicate that
modern deep learning-based approaches offer significant
advantages in speed and flexibility, while classical methods retain
strengths in accuracy and consistency. To facilitate access to 3D
reconstruction frameworks and ensure a more reliable user
evaluation, we also incorporate a web-based interface. This
eliminates the need for users to manually collect data and execute
reconstruction steps, allowing them to focus solely on evaluating
the final 3D reconstruction results, thereby enhancing the
validity of the user survey results.

Index Terms—3D reconstruction, Neural radiance fields
(NeRF), SFM+MVS, Triangulation.

I. INTRODUCTION

HREE document dimensional (3D) modeling has gained
significant traction across various industries, from
entertainment to civil engineering [1]. Its primary advantage
lies in its ability to reconstruct real-world objects into 3D
digital counterparts, enabling intuitive visualization,
manipulation, and supporting the burgeoning field of
augmented reality (AR).
One approach used to achieve this is through
photogrammetry technology [2]. Photogrammetry, a technique
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that extracts geometric information from 2D images to create
3D models of real-world objects, has emerged as a focal point
in recent research [3]. Its key advantage is the ability to
generate 3D models at a relatively low cost without the need
for specialized equipment like LiDAR-based 3D scanners.
Unlike LiDAR, which employs complex laser technology,
photogrammetry utilizes affordable commercial cameras [4].

One photogrammetry technique that is being actively
developed is Structure from Motion (SfM). Structure from
Motion (SfM) is a prominent technique within
photogrammetry and computer vision that reconstructs 3D
structures from a sequence of 2D images captured from
different viewpoints. By automatically identifying camera
positions based on feature matching between images, SfM
eliminates the need for manual calculations [5]. This
advantage has led to the exploration of various open-source
methods such as OpenSfM [6] and VisualSf [7]. Furthermore,
COLMAP incorporates Multi-View Stereo (MVS) to produce
dense 3D reconstruction surfaces [8]. With the advancement
of Al, neural network-based methods like Instant NGP [9]
have emerged, offering fast and dense 3D reconstructions
compared to other neural network approaches.

This paper compares the strengths and weaknesses of both
classical photogrammetry methods (OpenSfM, VisualSfM,
and COLMAP) and the modern neural network approach
(Instant NGP). We analyze their accuracy, completeness,
realism, and computational time. Furthermore, to the best of
the author's knowledge, there are few user interfaces that
specifically address the challenge of making 3D reconstruction
easily accessible to a broader audience. Most existing
solutions require a significant level of expertise, which can be
a barrier for novice users. In this paper, we present a user-
friendly web interface designed to bridge this gap by
simplifying the 3D reconstruction process. The interface not
only streamlines the workflow but also incorporates a range of
algorithms, allowing users to experiment with different
techniques. The web interface is designed to streamline the
process, making it more convenient and intuitive.
Additionally, the interface not only simplifies the workflow
but also integrates various algorithms, allowing users to
experiment with different reconstruction techniques.
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Fig. 1. Research Methodology.

II. RESEARCH METHODS

The research is carried out in three main stages. The first stage
involves exploring 3D reconstruction techniques, covering
both traditional approaches and neural network methods. The
second stage focuses on the development of a web interface
for 3D reconstruction, while the final stage involves the
evaluation methods used to assess the obtained results (See
Fig. 1)

A. 3D reconstruction

The first step in this research methodology was selecting
appropriate algorithms and software for 3D reconstruction.
Four primary software packages were chosen: OpenSfM,
COLMAP, VisualSfM, and Instant-NGP, based on their
proven ability to transform 2D images into 3D models.
Additionally, alternative options such as OpenMVG,
OpenMVS, Bundler, MicMac, and Meshroom were
considered. The study categorized the selected 3D
reconstruction algorithms into two main groups: Classical Al-
based algorithms: VisualSfM, OpenSfM, COLMAP and
neural network-based algorithms: Instant NGP.

The dataset consisted of a series of 2D images, which could
be obtained either from photographs or extracted from video
frames of the object intended for reconstruction. The data
collection process was conducted to ensure the availability of
high-quality images with sufficient viewpoints to
comprehensively capture the entire object. Subsequently, the
selected algorithms were implemented. Each algorithm—
OpenSfM, VisualSfM, COLMAP, and Instant NGP—was
executed using the preprocessed data. This process involved
configuring the algorithm parameters according to the research
requirements.

The selection of an appropriate photogrammetry algorithm
is essential for developing effective photogrammetry
applications [10]. Numerous photogrammetry algorithms have
been developed, each with its own strengths and limitations.
For example, OpenSfM (Structure from Motion) is an efficient
open-source framework for constructing 3D models from
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Fig. 2. Visual SfM flowchart.

VisualSftM (Visual Structure from Motion) is another
widely used open-source algorithm for 3D reconstruction from
images (see Fig. 2). The 3D reconstruction pipeline begins
with image calibration, which corrects for lens distortions to
ensure geometric accuracy in the subsequent processing steps.
Following this, the Structure-from-Motion (SfM) process is
initiated.Distinctive visual features such as corners, edges, and
textures are extracted using Scale-Invariant Feature Transform
(SIFT). This method identifies keypoints across scales using
the Difference of Gaussian (DoG) function:

D(x,y,0) = (G(x,y,ka) * 1(x,y)) — (G(x,y,0) * [(x,)) (1)
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here, L(x, y, o) is the image blurred with a Gaussian kernel,
where G(X, y, o) is the Gaussian smoothing function, I(x, y) is
the original image, and k is the scale factor controlling the
degree of blur. These keypoints are matched across image
pairs by computing the Euclidean distance between their
descriptors:

d(A,B) = V(Z(A —B)?) (2)

These correspondences enable the estimation of spatial
relationships between images which enables the triangulation
and bundle adjustment. Using the matched features,
triangulation determines the 3D coordinates of points in space.
Local bundle adjustment refines camera poses and 3D points
incrementally for small sets of images. Global bundle
adjustment then optimizes the entire reconstruction by
minimizing reprojection error, ensuring higher accuracy and
correcting drift. The result of SfM is a sparse point cloud
representing the scene geometry and estimated camera
positions.Multi-View Stereo (MVS) follows SfM to produce a
high-fidelity 3D model. From the sparse reconstruction, MVS
computes depth maps for each image using pixel-level
photometric consistency. The individual depth maps are fused
into a dense point cloud, capturing fine surface details. This
dense cloud is then converted into a complete 3D model,
typically represented as a mesh or textured surface [12].

COLMAP (see Fig. 3) is an advanced open-source 3D
reconstruction pipeline that improves upon traditional methods
like VisualSfM by integrating robust geometric verification
and dense reconstruction techniques. After extracting features
from images, it performs feature matching and applies
geometric  verification using the Fundamental Matrix
constraint (xTFx = 0) to ensure that only geometrically
consistent matches are retained. This step, supported by
RANSAC, eliminates outliers and prevents errors in
triangulation and camera pose estimation. COLMAP also uses
Homography Filtering to discard matches on planar surfaces,
which could otherwise distort the 3D structure. Once verified,
triangulation and bundle adjustment refine the camera
positions and produce a sparse point cloud. In the MVS phase,
COLMAP estimates and filters depth maps before fusing them
into a mesh and applying texture, resulting in an accurate and
detailed 3D model [13].

Instant Neural Graphics Primitives (Instant-NGP) (see Fig.
4) is a high-performance 3D reconstruction framework built
on the Neural Radiance Fields (NeRF) architecture, designed
for real-time training and rendering of 3D scenes [14]. The
process begins with a set of input images, from which camera
intrinsics, extrinsics, and sparse 3D points are extracted using
COLMAP's Structure-from-Motion (SfM) pipeline. The sparse
point cloud output from COLMAP is then converted into a
format compatible with Instant-NGP, serving as the
foundation for neural scene representation.
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Fig. 3. COLMAP flowchart.

Once converted, Instant-NGP initiates training of a NeRF
model using a multi-layer perceptron (MLP) architecture. The
first step involves encoding 3D positions using a multi-
resolution hash grid, which is a core innovation of Instant-
NGP. This grid structure enables efficient and high-fidelity
feature encoding across varying spatial scales, allowing the
network to represent both fine-grained details and broader
geometric structures. These encoded features are then passed
through the first MLP to predict the volumetric density of each
spatial location, along with latent feature vectors [15]..

Subsequently, a second MLP uses these features—along
with view direction information—to predict the RGB color at
each point. The predicted color and density values are
accumulated via volume rendering, a differentiable process
that synthesizes pixel intensities by integrating contributions
along each camera ray. This rendering is compared to the
actual pixel values in the training images, and the difference is
measured using a photometric loss function (L _color). The
network is trained iteratively using optimization techniques
such as Stochastic Gradient Descent (SGD) and Adam,
minimizing the loss until convergence.

Once training completes, the output is a continuous, fully
learned Neural Radiance Field, which can be used to generate
novel views of the scene from arbitrary camera angles. The
efficiency of the hash grid encoding, combined with GPU-
accelerated computation and optimized training, enables
Instant-NGP to perform real-time or near-real-time 3D
reconstruction—significantly faster than conventional NeRF
implementations while maintaining high visual fidelity.
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Fig. 4. Instant NGP flowchart.

B. Web development

This study presents a web-based application tailored for
non-technical users to facilitate the generation of 3D models
from image collections. The system features a Vue.js-powered
front-end interface, designed to offer a responsive and user-
friendly experience. The back-end, developed using the Flask
framework, is responsible for data preprocessing, execution of
reconstruction algorithms, and database operations, interfacing
with an SQL-based database. For real-time, in-browser
visualization of 3D models, the platform employs THREE js,
eliminating the need for additional software installations.
Users can initiate model reconstruction by selecting a
preferred algorithm and uploading a set of images. Upon
processing, the backend generates a 3D model, which is
rendered directly in the browser via THREE.s. The
application also incorporates a model history feature, allowing
users to access and download previously generated models in
PLY format. Furthermore, an administrative dashboard is
provided for efficient database management and monitoring.

C. Evaluation methods

Four evaluation methods were employed in this study.
Firstly, a comparison between the number of images and the
time required to generate a 3D model using VisualSfM was
conducted. Secondly, the relationship between the number of
images and the number of vertices produced using VisualSfM
was examined. In both cases, the number of images refers to
the different angles from which the object was captured.
Graphs were generated to visualize the correlation between the
number of images and processing time, as well as the number
of images and the number of vertices produced. Thirdly, a
comparison of the 3D reconstruction results from VisualSfM,
OpenSfM, and COLMAP was performed. This involved
comparing the generated 3D models and their corresponding
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processing times. The parameters of each algorithm were
adjusted as needed to optimize performance.

Additionally, a survey was conducted with five participants
to evaluate the 3D reconstruction results of three different
objects: a mouse, a statue, and a pencil holder. The mouse
represented a reflective object, the statue a large object, and
the pencil holder an object with complex angles. Each object
had four reconstruction results generated by the four different
algorithms. Participants were asked to rate the reconstruction
results on a scale of 1 to 5, with 1 being the lowest quality and
5 being the highest, based on four evaluation parameters:
accuracy, completeness, smoothness, and noise level. The data
collected from the survey was used for quantitative analysis to
assess the performance of each 3D reconstruction algorithm.
These evaluation methods provided comprehensive insights
into the efficiency and effectiveness of different 3D
reconstruction algorithms. Findings from both computational
analysis and user evaluations contributed to a well-rounded
assessment of reconstruction performance.

ITII. RESULTS AND DISCUSSIONS

A. Web Page Development

As shown in the flowchart (Fig. 5), users begin by entering
a project name or the name of the object to be converted from
2D to 3D. They then select an algorithm from the system’s
options—VisualSFM, COLMAP, or Instant NGP—and upload
a set of images for processing. Upon clicking the 'Process'
button, the system initiates the photogrammetry process using
the chosen algorithm, employing state-of-the-art techniques.
Once processing is complete, users are presented with a
preview of the 3D reconstruction in the form of a point cloud.
Users can interactively explore the 3D model using the built-in
visualization tool integrated into the web interface, as shown
in Fig. 6 (3D reconstruction results).
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to create 3D object
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Error Message
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Create new folder and Choose Input project
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Fig. 5. Flowchart of the web page.
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Fig. 7. The camera positions, illustrated as prismatic shapes, represent data
collection points captured using a handheld smartphone. These positions were
estimated through the auto-calibration feature in Structure-from-Motion
(St™M).

Additionally, users can save the reconstruction results to the
database. They may also download the 3D model in “ply”
format for further inspection and manipulation using external
software such as MeshLab or Blender. Fig. 6 displays the
results of the web interface, following the workflow illustrated
in Fig. 5. The process begins with the user uploading data in
the form of an image series or a video, followed by
processing, visualization of the reconstruction results, and the
option to save the output to the database for future use or
detailed examination.

B. 3D Reconstruction Evaluation

The images—along with videos, which are converted into
individual image frames—are processed using various 3D
reconstruction algorithms. In this study, we evaluate three
methods: VisualSfM, COLMAP, and Instant-NGP. VisualSfM
and COLMAP represent classical photogrammetry-based
approaches, whereas Instant-NGP employs a modern neural
network-based technique. The output of the reconstruction
differs significantly between these approaches. Traditional
methods, such as VisualSfM and COLMAP, generate a set of
3D points (vertices) that form a sparse or dense point cloud. In
contrast, Instant-NGP produces a NeRF (Neural Radiance
Field) scene (Fig. 4).

A NeRF scene is a continuous volumetric representation of
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a 3D environment, learned from a set of input images using
neural networks. Unlike traditional point clouds, NeRF
encodes scene geometry and appearance by learning how light
radiates from any point in 3D space given a viewing direction.
This allows it to synthesize highly realistic novel views,
making it particularly effective for rendering complex scenes
with intricate lighting and surface details.

Due to the fundamentally different nature of the outputs, a
direct quantitative comparison between traditional and neural
network-based reconstruction methods is challenging.
Consequently, this study focuses on comparing computation
time and assessing reconstruction quality through human
perception. This perceptual evaluation provides valuable
insights by incorporating direct user feedback to assess key
aspects of 3D reconstruction quality, including completeness,
accuracy of detail, surface smoothness, and noise level.

In the initial stage, the reconstruction processes in
VisualSfM, COLMAP, and Instant-NGP share a common
procedure to estimate unknown camera positions. This begins
with feature extraction and feature matching across multiple
overlapping images. Through this process, Structure-from-
Motion (SfM) techniques are applied to perform camera auto-
calibration, which determines the camera poses relative to the
object. The results of this auto-calibration are illustrated in
Fig. 7, showing the estimated camera positions. The
distribution of the inferred camera poses is non-uniform,
primarily because the data was captured using a handheld
smartphone. Unlike fixed or rig-mounted cameras, handheld
capture introduces variability in viewpoint and motion,
making accurate pose estimation more challenging due to the
natural, dynamic movement of the user's hand during image
acquisition.

Table 1 presents the results of reconstruction using
VisualSfM, showing the relationship between the number of
input images, processing time, and the number of vertices
generated by the VisualSfM algorithm. As the number of input
images increases, the number of generated vertices also tends
to rise (with some exceptions). This indicates a positive
correlation between the number of images and the complexity
of the reconstructed model. However, it is important to note
that a higher number of vertices does not always guarantee
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better reconstruction quality. As illustrated in Fig. 8—

particularly in entries No. 8 (914 images) and No. 9 (1,827 TABLEI
images)—an excessive number of vertices can lead to noisy or RECONSTRUCTION RESULTS, FRAME VS TIME VS VERTICES,
. . No Number  Processing Status Vertices
Inaccurate reconstructions. of Time

Another significant observation is that the processing time Images
required to generate the 3D model increases substantially as L. 4 2 sec No result -
the number of input images grows. This exponential rise in 2 7 2 sec No result :

. . A : 3. 11 10 sec Result not clear 7131

processing time highlights the trade-off between the number 4. 21 22 sec Half 33368

of images used and the available computational resources.In reconstruction

conclusion, the results suggest that there is an optimal range > 63 101 see gzgn‘ft‘g:zgn 184331
for the number of input images that provides a balance 6. 131 310 sec Good 332964
between reconstruction quality, processing time, and 7. 261 15 mins Good 520776

: : : 8. 914 148.5 mins Many noise 885222
computational cost. Further research is needed to determine o 1807 5343 mins Full of noise 1403262

this optimal number for different object shapes, levels of
complexity, and desired reconstruction quality.

21 images 63 images 131 images 7

261 images 914 images | 1827 images

Fig. 8. The 3D reconstruction result corresponding to the data in Table 1, starting from entry No. 4 with 21 input images. Each image represents two viewpoints
of the reconstructed 3D object. As the number of input images increases, the quality of the reconstruction generally improves. However, using too many images
can also lead to noisy 3D object results.

10 mVisualSTM  mOpenSfM  m COLMAP cor.lsistent’trend in p.rocessing time across 'the four tested
8 objects using three different 3D reconstruction approaches.
The numbers in brackets indicate the number of images

§6 processed by each algorithm. VisualSfM consistently
2 outperformed the other algorithms, achieving the shortest
=4 processing times. OpenSfM ranked second in efficiency, while
2 COLMAP showed the longest processing durations.
. B I Additionally, the processing time for all algorithms increased

with the number of images processed. These findings suggest
Mouse (54) Status (62) Holder(48) Tissue (32) that VisualSfM's algorithmic design may be more
Object computationally efficient than the others.

Fig. 9. Comparison of computation times for 3D reconstruction methods
evaluated on various objects. C. Survey Evaluation

o o ) This survey involved participants without specialized
Further analysis is presented in Fig. 9, which demonstrates a  knowledge of 3D reconstruction, aiming to capture public
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perspectives and encourage a more inclusive evaluation of the
reconstruction outcomes. The algorithms were assessed on
three distinct object types: a reflective wireless mouse, a large
statue, and a complexly angled pencil holder. A notable trend
observed in Fig. 10.d is the consistently high performance of
VisualSFM. Despite exhibiting lower scores in other metrics,
VisualSFM produced reconstructions with minimal noise
across all object types. This suggests that VisualSFM
effectively handles image noise and outliers during the
reconstruction process. In contrast, Instant-NGP demonstrated
the highest noise levels, particularly for the statue and pencil
holder, indicating potential challenges in handling complex
scenes.

Regarding Fig. 10.a accuracy, Instant-NGP exhibited
superior performance across all objects, surpassing the other
algorithms by a significant margin. This suggests that Instant-
NGP's neural network-based approach is highly effective in
capturing fine details and geometric features. VisualSFM and
OpenStM showed comparable results, with slight variations
across different object types. COLMAP, while generally
performing well, exhibited lower accuracy for the complex
pencil holder object, indicating potential limitations in
handling intricate geometries.

In terms of Fig. 10.b smoothness, Instant-NGP again
demonstrated exceptional performance, producing highly
smooth reconstructions for all objects. This is likely attributed
to the dense representation and interpolation capabilities of
neural radiance fields. VisualSFM and OpenSfM showed
similar levels of smoothness, with slight variations across
objects. COLMAP, while generally producing acceptable
results, exhibited some roughness in the reconstructions of the
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statue and pencil holder, suggesting potential challenges in
surface interpolation.

Completeness Fig. 10.c, as measured by the extent to which
the object is fully reconstructed, was generally high for all
algorithms. However, Instant-NGP consistently achieved the
highest completeness scores, indicating its ability to capture a
larger portion of the object's geometry. VisualSFM and
OpenSfM demonstrated comparable levels of completeness,
with minor variations across objects. COLMAP showed
slightly lower completeness for the complex pencil holder,
potentially due to challenges in handling occlusions and self-
similarities.

Instant-NGP exhibited the strongest overall performance
across all evaluation metrics (Fig. 11), demonstrating its
ability to generate high-quality, detailed, and complete 3D
reconstructions. VisualSFM, while showing weaknesses in
accuracy and completeness, excels in noise reduction and
produces visually pleasing results. OpenSfM provides a solid
balance of performance across different metrics. COLMAP,
while competitive in certain aspects, shows limitations in
handling complex geometries and noise.

These findings align with the notion that VisualSFM, despite
its theoretical limitations in camera pose estimation, often
produces visually appealing results due to its ability to
suppress noise and generate smooth surfaces. However, for
applications requiring high accuracy and completeness,
Instant-NGP emerges as the preferred choice. Further research
is needed to investigate the underlying factors contributing to
the strengths and weaknesses of each algorithm and to explore
potential hybrid approaches combining the advantages of
different methods.
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Fig. 10. Survey results reflecting human perception of the quality of 3D reconstruction outcomes.
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IV. CONCLUSION

This research aimed to develop a web application capable of
automatically generating 3D models from a collection of
images, while also conducting a comparative analysis between
traditional 3D reconstruction methods (based on vertices) and
modern approaches utilizing deep learning (e.g., NeRF
scenes). By integrating 3D reconstruction algorithms—
including VisualSfM, OpenSftM, COLMAP, and Instant-
NGP—the study successfully built a user-friendly platform for
executing 3D reconstruction tasks. The comparison between
the traditional algorithms (VisualSfM, OpenSftM, COLMAP)
and the deep learning-based Instant-NGP revealed that the
choice of algorithm is highly influenced by the characteristics
of the target object. While Instant-NGP showed superior
performance across various scenarios, VisualSfM remained
the most efficient in terms of computation time. Overall, the
developed web application offers an accessible and effective
solution for users aiming to create 3D models without
requiring in-depth technical expertise. As a future direction,
this research could focus on optimizing algorithm performance
for objects with low texture detail or those captured under
challenging lighting conditions.
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