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Abstract—The rapid advancement of 3D reconstruction 

technology has created significant opportunities across various 

fields, yet its complexity remains a barrier to widespread 

adoption, particularly for novice users. This research evaluates 

and compares traditional and modern 3D reconstruction 

methods to assess their effectiveness in terms of reconstruction 

quality and processing efficiency. Classical approaches such as 

COLMAP and VisualSfM are analyzed alongside the neural 

network-based Instant-NGP to highlight their respective 

strengths and limitations. A comparative study is conducted 

based on both objective metrics and subjective human 

perception, ensuring a comprehensive evaluation of their 

performance. Additionally, user feedback is collected to assess 

ease of use and accessibility, providing insights into potential 

improvements for broader adoption. The findings indicate that 

modern deep learning-based approaches offer significant 

advantages in speed and flexibility, while classical methods retain 

strengths in accuracy and consistency. To facilitate access to 3D 

reconstruction frameworks and ensure a more reliable user 

evaluation, we also incorporate a web-based interface. This 

eliminates the need for users to manually collect data and execute 

reconstruction steps, allowing them to focus solely on evaluating 

the final 3D reconstruction results, thereby enhancing the 

validity of the user survey results. 

 
Index Terms—3D reconstruction, Neural radiance fields 

(NeRF), SFM+MVS, Triangulation. 

 

I. INTRODUCTION 

HREE document dimensional (3D) modeling has gained 

significant traction across various industries, from 

entertainment to civil engineering [1]. Its primary advantage 

lies in its ability to reconstruct real-world objects into 3D 

digital counterparts, enabling intuitive visualization, 

manipulation, and supporting the burgeoning field of 

augmented reality (AR). 

One approach used to achieve this is through 

photogrammetry technology [2]. Photogrammetry, a technique 
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that extracts geometric information from 2D images to create 

3D models of real-world objects, has emerged as a focal point 

in recent research [3]. Its key advantage is the ability to 

generate 3D models at a relatively low cost without the need 

for specialized equipment like LiDAR-based 3D scanners. 

Unlike LiDAR, which employs complex laser technology, 

photogrammetry utilizes affordable commercial cameras [4].  

One photogrammetry technique that is being actively 

developed is Structure from Motion (SfM). Structure from 

Motion (SfM) is a prominent technique within 

photogrammetry and computer vision that reconstructs 3D 

structures from a sequence of 2D images captured from 

different viewpoints. By automatically identifying camera 

positions based on feature matching between images, SfM 

eliminates the need for manual calculations [5]. This 

advantage has led to the exploration of various open-source 

methods such as OpenSfM [6] and VisualSf [7]. Furthermore, 

COLMAP incorporates Multi-View Stereo (MVS) to produce 

dense 3D reconstruction surfaces [8]. With the advancement 

of AI, neural network-based methods like Instant NGP [9] 

have emerged, offering fast and dense 3D reconstructions 

compared to other neural network approaches.  

This paper compares the strengths and weaknesses of both 

classical photogrammetry methods (OpenSfM, VisualSfM, 

and COLMAP) and the modern neural network approach 

(Instant NGP). We analyze their accuracy, completeness, 

realism, and computational time. Furthermore, to the best of 

the author's knowledge, there are few user interfaces that 

specifically address the challenge of making 3D reconstruction 

easily accessible to a broader audience. Most existing 

solutions require a significant level of expertise, which can be 

a barrier for novice users. In this paper, we present a user-

friendly web interface designed to bridge this gap by 

simplifying the 3D reconstruction process. The interface not 

only streamlines the workflow but also incorporates a range of 

algorithms, allowing users to experiment with different 

techniques. The web interface is designed to streamline the 

process, making it more convenient and intuitive. 

Additionally, the interface not only simplifies the workflow 

but also integrates various algorithms, allowing users to 

experiment with different reconstruction techniques. 
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Fig. 1.  Research Methodology. 

II. RESEARCH METHODS 

The research is carried out in three main stages. The first stage 

involves exploring 3D reconstruction techniques, covering 

both traditional approaches and neural network methods. The 

second stage focuses on the development of a web interface 

for 3D reconstruction, while the final stage involves the 

evaluation methods used to assess the obtained results (See 

Fig. 1) 

A. 3D reconstruction 

The first step in this research methodology was selecting 

appropriate algorithms and software for 3D reconstruction. 

Four primary software packages were chosen: OpenSfM, 

COLMAP, VisualSfM, and Instant-NGP, based on their 

proven ability to transform 2D images into 3D models. 

Additionally, alternative options such as OpenMVG, 

OpenMVS, Bundler, MicMac, and Meshroom were 

considered. The study categorized the selected 3D 

reconstruction algorithms into two main groups: Classical AI-

based algorithms: VisualSfM, OpenSfM, COLMAP and 

neural network-based algorithms: Instant NGP. 

The dataset consisted of a series of 2D images, which could 

be obtained either from photographs or extracted from video 

frames of the object intended for reconstruction. The data 

collection process was conducted to ensure the availability of 

high-quality images with sufficient viewpoints to 

comprehensively capture the entire object. Subsequently, the 

selected algorithms were implemented. Each algorithm—

OpenSfM, VisualSfM, COLMAP, and Instant NGP—was 

executed using the preprocessed data. This process involved 

configuring the algorithm parameters according to the research 

requirements. 

The selection of an appropriate photogrammetry algorithm 

is essential for developing effective photogrammetry 

applications [10]. Numerous photogrammetry algorithms have 

been developed, each with its own strengths and limitations. 

For example, OpenSfM (Structure from Motion) is an efficient 

open-source framework for constructing 3D models from 

image collections by leveraging camera information and the 

relative motion between images [11]. 

 

 
 

Fig. 2. Visual SfM flowchart. 

 

VisualSfM (Visual Structure from Motion) is another 

widely used open-source algorithm for 3D reconstruction from 

images (see Fig. 2). The 3D reconstruction pipeline begins 

with image calibration, which corrects for lens distortions to 

ensure geometric accuracy in the subsequent processing steps. 

Following this, the Structure-from-Motion (SfM) process is 

initiated.Distinctive visual features such as corners, edges, and 

textures are extracted using Scale-Invariant Feature Transform 

(SIFT). This method identifies keypoints across scales using 

the Difference of Gaussian (DoG) function: 

   

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) ∗ 𝐼(𝑥, 𝑦)) − (𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦))     (1) 
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here, L(x, y, σ) is the image blurred with a Gaussian kernel, 

where G(x, y, σ) is the Gaussian smoothing function, I(x, y) is 

the original image, and k is the scale factor controlling the 

degree of blur. These keypoints are matched across image 

pairs by computing the Euclidean distance between their 

descriptors: 

 

𝑑(𝐴, 𝐵)  =  √(∑(𝐴ᵢ − 𝐵ᵢ)²)                           (2) 

 

These correspondences enable the estimation of spatial 

relationships between images which enables the triangulation 

and bundle adjustment. Using the matched features, 

triangulation determines the 3D coordinates of points in space. 

Local bundle adjustment refines camera poses and 3D points 

incrementally for small sets of images. Global bundle 

adjustment then optimizes the entire reconstruction by 

minimizing reprojection error, ensuring higher accuracy and 

correcting drift. The result of SfM is a sparse point cloud 

representing the scene geometry and estimated camera 

positions.Multi-View Stereo (MVS) follows SfM to produce a 

high-fidelity 3D model. From the sparse reconstruction, MVS 

computes depth maps for each image using pixel-level 

photometric consistency. The individual depth maps are fused 

into a dense point cloud, capturing fine surface details. This 

dense cloud is then converted into a complete 3D model, 

typically represented as a mesh or textured surface [12]. 

COLMAP (see Fig. 3) is an advanced open-source 3D 

reconstruction pipeline that improves upon traditional methods 

like VisualSfM by integrating robust geometric verification 

and dense reconstruction techniques. After extracting features 

from images, it performs feature matching and applies 

geometric verification using the Fundamental Matrix 

constraint (x′ᵀFx = 0) to ensure that only geometrically 

consistent matches are retained. This step, supported by 

RANSAC, eliminates outliers and prevents errors in 

triangulation and camera pose estimation. COLMAP also uses 

Homography Filtering to discard matches on planar surfaces, 

which could otherwise distort the 3D structure. Once verified, 

triangulation and bundle adjustment refine the camera 

positions and produce a sparse point cloud. In the MVS phase, 

COLMAP estimates and filters depth maps before fusing them 

into a mesh and applying texture, resulting in an accurate and 

detailed 3D model [13]. 

Instant Neural Graphics Primitives (Instant-NGP) (see Fig. 

4) is a high-performance 3D reconstruction framework built 

on the Neural Radiance Fields (NeRF) architecture, designed 

for real-time training and rendering of 3D scenes [14]. The 

process begins with a set of input images, from which camera 

intrinsics, extrinsics, and sparse 3D points are extracted using 

COLMAP's Structure-from-Motion (SfM) pipeline. The sparse 

point cloud output from COLMAP is then converted into a 

format compatible with Instant-NGP, serving as the 

foundation for neural scene representation. 

 

 
Fig. 3. COLMAP flowchart. 

 

Once converted, Instant-NGP initiates training of a NeRF 

model using a multi-layer perceptron (MLP) architecture. The 

first step involves encoding 3D positions using a multi-

resolution hash grid, which is a core innovation of Instant-

NGP. This grid structure enables efficient and high-fidelity 

feature encoding across varying spatial scales, allowing the 

network to represent both fine-grained details and broader 

geometric structures. These encoded features are then passed 

through the first MLP to predict the volumetric density of each 

spatial location, along with latent feature vectors [15].. 

Subsequently, a second MLP uses these features—along 

with view direction information—to predict the RGB color at 

each point. The predicted color and density values are 

accumulated via volume rendering, a differentiable process 

that synthesizes pixel intensities by integrating contributions 

along each camera ray. This rendering is compared to the 

actual pixel values in the training images, and the difference is 

measured using a photometric loss function (L_color). The 

network is trained iteratively using optimization techniques 

such as Stochastic Gradient Descent (SGD) and Adam, 

minimizing the loss until convergence. 

Once training completes, the output is a continuous, fully 

learned Neural Radiance Field, which can be used to generate 

novel views of the scene from arbitrary camera angles. The 

efficiency of the hash grid encoding, combined with GPU-

accelerated computation and optimized training, enables 

Instant-NGP to perform real-time or near-real-time 3D 

reconstruction—significantly faster than conventional NeRF 

implementations while maintaining high visual fidelity.
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Fig. 4. Instant NGP flowchart. 

 

B. Web development 

This study presents a web-based application tailored for 

non-technical users to facilitate the generation of 3D models 

from image collections. The system features a Vue.js-powered 

front-end interface, designed to offer a responsive and user-

friendly experience. The back-end, developed using the Flask 

framework, is responsible for data preprocessing, execution of 

reconstruction algorithms, and database operations, interfacing 

with an SQL-based database. For real-time, in-browser 

visualization of 3D models, the platform employs THREE.js, 

eliminating the need for additional software installations. 

Users can initiate model reconstruction by selecting a 

preferred algorithm and uploading a set of images. Upon 

processing, the backend generates a 3D model, which is 

rendered directly in the browser via THREE.js. The 

application also incorporates a model history feature, allowing 

users to access and download previously generated models in 

PLY format. Furthermore, an administrative dashboard is 

provided for efficient database management and monitoring. 

C. Evaluation methods 

Four evaluation methods were employed in this study. 

Firstly, a comparison between the number of images and the 

time required to generate a 3D model using VisualSfM was 

conducted. Secondly, the relationship between the number of 

images and the number of vertices produced using VisualSfM 

was examined. In both cases, the number of images refers to 

the different angles from which the object was captured. 

Graphs were generated to visualize the correlation between the 

number of images and processing time, as well as the number 

of images and the number of vertices produced. Thirdly, a 

comparison of the 3D reconstruction results from VisualSfM, 

OpenSfM, and COLMAP was performed. This involved 

comparing the generated 3D models and their corresponding 

processing times. The parameters of each algorithm were 

adjusted as needed to optimize performance. 

Additionally, a survey was conducted with five participants 

to evaluate the 3D reconstruction results of three different 

objects: a mouse, a statue, and a pencil holder. The mouse 

represented a reflective object, the statue a large object, and 

the pencil holder an object with complex angles. Each object 

had four reconstruction results generated by the four different 

algorithms. Participants were asked to rate the reconstruction 

results on a scale of 1 to 5, with 1 being the lowest quality and 

5 being the highest, based on four evaluation parameters: 

accuracy, completeness, smoothness, and noise level. The data 

collected from the survey was used for quantitative analysis to 

assess the performance of each 3D reconstruction algorithm. 

These evaluation methods provided comprehensive insights 

into the efficiency and effectiveness of different 3D 

reconstruction algorithms. Findings from both computational 

analysis and user evaluations contributed to a well-rounded 

assessment of reconstruction performance. 

III. RESULTS AND DISCUSSIONS 

A. Web Page Development 

As shown in the flowchart (Fig. 5), users begin by entering 

a project name or the name of the object to be converted from 

2D to 3D. They then select an algorithm from the system’s 

options—VisualSFM, COLMAP, or Instant NGP—and upload 

a set of images for processing. Upon clicking the 'Process' 

button, the system initiates the photogrammetry process using 

the chosen algorithm, employing state-of-the-art techniques. 

Once processing is complete, users are presented with a 

preview of the 3D reconstruction in the form of a point cloud. 

Users can interactively explore the 3D model using the built-in 

visualization tool integrated into the web interface, as shown 

in Fig. 6 (3D reconstruction results).  

 

 
 

Fig. 5. Flowchart of the web page.
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Fig. 6. Web page design result. 

 

 

 
Fig. 7. The camera positions, illustrated as prismatic shapes, represent data 

collection points captured using a handheld smartphone. These positions were 

estimated through the auto-calibration feature in Structure-from-Motion 

(SfM). 

 

Additionally, users can save the reconstruction results to the 

database. They may also download the 3D model in “ply” 

format for further inspection and manipulation using external 

software such as MeshLab or Blender. Fig. 6 displays the 

results of the web interface, following the workflow illustrated 

in Fig. 5. The process begins with the user uploading data in 

the form of an image series or a video, followed by 

processing, visualization of the reconstruction results, and the 

option to save the output to the database for future use or 

detailed examination. 

 

B. 3D Reconstruction Evaluation 

The images—along with videos, which are converted into 

individual image frames—are processed using various 3D 

reconstruction algorithms. In this study, we evaluate three 

methods: VisualSfM, COLMAP, and Instant-NGP. VisualSfM 

and COLMAP represent classical photogrammetry-based 

approaches, whereas Instant-NGP employs a modern neural 

network-based technique. The output of the reconstruction 

differs significantly between these approaches. Traditional 

methods, such as VisualSfM and COLMAP, generate a set of 

3D points (vertices) that form a sparse or dense point cloud. In 

contrast, Instant-NGP produces a NeRF (Neural Radiance 

Field) scene (Fig. 4). 

A NeRF scene is a continuous volumetric representation of 

a 3D environment, learned from a set of input images using 

neural networks. Unlike traditional point clouds, NeRF 

encodes scene geometry and appearance by learning how light 

radiates from any point in 3D space given a viewing direction. 

This allows it to synthesize highly realistic novel views, 

making it particularly effective for rendering complex scenes 

with intricate lighting and surface details.  

Due to the fundamentally different nature of the outputs, a 

direct quantitative comparison between traditional and neural 

network-based reconstruction methods is challenging. 

Consequently, this study focuses on comparing computation 

time and assessing reconstruction quality through human 

perception. This perceptual evaluation provides valuable 

insights by incorporating direct user feedback to assess key 

aspects of 3D reconstruction quality, including completeness, 

accuracy of detail, surface smoothness, and noise level. 

In the initial stage, the reconstruction processes in 

VisualSfM, COLMAP, and Instant-NGP share a common 

procedure to estimate unknown camera positions. This begins 

with feature extraction and feature matching across multiple 

overlapping images. Through this process, Structure-from-

Motion (SfM) techniques are applied to perform camera auto-

calibration, which determines the camera poses relative to the 

object. The results of this auto-calibration are illustrated in 

Fig. 7, showing the estimated camera positions. The 

distribution of the inferred camera poses is non-uniform, 

primarily because the data was captured using a handheld 

smartphone. Unlike fixed or rig-mounted cameras, handheld 

capture introduces variability in viewpoint and motion, 

making accurate pose estimation more challenging due to the 

natural, dynamic movement of the user's hand during image 

acquisition. 

Table 1 presents the results of reconstruction using 

VisualSfM, showing the relationship between the number of 

input images, processing time, and the number of vertices 

generated by the VisualSfM algorithm. As the number of input 

images increases, the number of generated vertices also tends 

to rise (with some exceptions). This indicates a positive 

correlation between the number of images and the complexity 

of the reconstructed model. However, it is important to note 

that a higher number of vertices does not always guarantee 

Upload Home page Processing 3D reconstruction results Saved to the database 

Video 

Images 
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better reconstruction quality. As illustrated in Fig. 8—

particularly in entries No. 8 (914 images) and No. 9 (1,827 

images)—an excessive number of vertices can lead to noisy or 

inaccurate reconstructions. 

Another significant observation is that the processing time 

required to generate the 3D model increases substantially as 

the number of input images grows. This exponential rise in 

processing time highlights the trade-off between the number 

of images used and the available computational resources.In 

conclusion, the results suggest that there is an optimal range 

for the number of input images that provides a balance 

between reconstruction quality, processing time, and 

computational cost. Further research is needed to determine 

this optimal number for different object shapes, levels of 

complexity, and desired reconstruction quality. 

 
TABLE I 

RECONSTRUCTION RESULTS, FRAME VS TIME VS VERTICES  

No Number 

of 

Images 

Processing 

Time 

 Status Vertices 

1.  4 2 sec No result - 

2.  7  2 sec No result - 

3.  11  10 sec Result not clear 7131 
4. 21 22 sec Half 

reconstruction 

33368 

5. 63 101 sec Half unclear 
reconstruction 

184331 

6. 131 310 sec Good 332964 

7. 261 15 mins Good 520776 
8. 914 148.5 mins Many noise 885222 

9.  1827 534.3 mins Full of noise 1403262 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. The 3D reconstruction result corresponding to the data in Table 1, starting from entry No. 4 with 21 input images. Each image represents two viewpoints 

of the reconstructed 3D object. As the number of input images increases, the quality of the reconstruction generally improves. However, using too many images 

can also lead to noisy 3D object results. 

 

 
 

Fig. 9. Comparison of computation times for 3D reconstruction methods 

evaluated on various objects. 

 

Further analysis is presented in Fig. 9, which demonstrates a 

consistent trend in processing time across the four tested 

objects using three different 3D reconstruction approaches. 

The numbers in brackets indicate the number of images 

processed by each algorithm. VisualSfM consistently 

outperformed the other algorithms, achieving the shortest 

processing times. OpenSfM ranked second in efficiency, while 

COLMAP showed the longest processing durations. 

Additionally, the processing time for all algorithms increased 

with the number of images processed. These findings suggest 

that VisualSfM's algorithmic design may be more 

computationally efficient than the others. 

 

C. Survey Evaluation 

This survey involved participants without specialized 

knowledge of 3D reconstruction, aiming to capture public 
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perspectives and encourage a more inclusive evaluation of the 

reconstruction outcomes. The algorithms were assessed on 

three distinct object types: a reflective wireless mouse, a large 

statue, and a complexly angled pencil holder. A notable trend 

observed in Fig. 10.d is the consistently high performance of 

VisualSFM. Despite exhibiting lower scores in other metrics, 

VisualSFM produced reconstructions with minimal noise 

across all object types. This suggests that VisualSFM 

effectively handles image noise and outliers during the 

reconstruction process. In contrast, Instant-NGP demonstrated 

the highest noise levels, particularly for the statue and pencil 

holder, indicating potential challenges in handling complex 

scenes. 

Regarding Fig. 10.a accuracy, Instant-NGP exhibited 

superior performance across all objects, surpassing the other 

algorithms by a significant margin. This suggests that Instant-

NGP's neural network-based approach is highly effective in 

capturing fine details and geometric features. VisualSFM and 

OpenSfM showed comparable results, with slight variations 

across different object types. COLMAP, while generally 

performing well, exhibited lower accuracy for the complex 

pencil holder object, indicating potential limitations in 

handling intricate geometries. 

In terms of Fig. 10.b smoothness, Instant-NGP again 

demonstrated exceptional performance, producing highly 

smooth reconstructions for all objects. This is likely attributed 

to the dense representation and interpolation capabilities of 

neural radiance fields. VisualSFM and OpenSfM showed 

similar levels of smoothness, with slight variations across 

objects. COLMAP, while generally producing acceptable 

results, exhibited some roughness in the reconstructions of the 

statue and pencil holder, suggesting potential challenges in 

surface interpolation. 

Completeness Fig. 10.c, as measured by the extent to which 

the object is fully reconstructed, was generally high for all 

algorithms. However, Instant-NGP consistently achieved the 

highest completeness scores, indicating its ability to capture a 

larger portion of the object's geometry. VisualSFM and 

OpenSfM demonstrated comparable levels of completeness, 

with minor variations across objects. COLMAP showed 

slightly lower completeness for the complex pencil holder, 

potentially due to challenges in handling occlusions and self-

similarities. 

Instant-NGP exhibited the strongest overall performance 

across all evaluation metrics (Fig. 11), demonstrating its 

ability to generate high-quality, detailed, and complete 3D 

reconstructions. VisualSFM, while showing weaknesses in 

accuracy and completeness, excels in noise reduction and 

produces visually pleasing results. OpenSfM provides a solid 

balance of performance across different metrics. COLMAP, 

while competitive in certain aspects, shows limitations in 

handling complex geometries and noise. 

These findings align with the notion that VisualSFM, despite 

its theoretical limitations in camera pose estimation, often 

produces visually appealing results due to its ability to 

suppress noise and generate smooth surfaces. However, for 

applications requiring high accuracy and completeness, 

Instant-NGP emerges as the preferred choice. Further research 

is needed to investigate the underlying factors contributing to 

the strengths and weaknesses of each algorithm and to explore 

potential hybrid approaches combining the advantages of 

different methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Accuracy and Detail b. Completeness 

c. Smoothness d. Noise Level 

Fig. 10. Survey results reflecting human perception of the quality of 3D reconstruction outcomes. 
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Fig. 11. Overall scores for each parameter. 

 

IV. CONCLUSION 

This research aimed to develop a web application capable of 

automatically generating 3D models from a collection of 

images, while also conducting a comparative analysis between 

traditional 3D reconstruction methods (based on vertices) and 

modern approaches utilizing deep learning (e.g., NeRF 

scenes). By integrating 3D reconstruction algorithms—

including VisualSfM, OpenSfM, COLMAP, and Instant-

NGP—the study successfully built a user-friendly platform for 

executing 3D reconstruction tasks. The comparison between 

the traditional algorithms (VisualSfM, OpenSfM, COLMAP) 

and the deep learning-based Instant-NGP revealed that the 

choice of algorithm is highly influenced by the characteristics 

of the target object. While Instant-NGP showed superior 

performance across various scenarios, VisualSfM remained 

the most efficient in terms of computation time. Overall, the 

developed web application offers an accessible and effective 

solution for users aiming to create 3D models without 

requiring in-depth technical expertise. As a future direction, 

this research could focus on optimizing algorithm performance 

for objects with low texture detail or those captured under 

challenging lighting conditions. 
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