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Proportional Integral Derivative Controller
Emulation Using Long Short-Term Memory for
Temperature Control
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Abstract—Driven by the shortcomings of traditional
Proportional Integral Derivative (PID) controllers, particularly
their limited responsiveness to changes in system parameters,
suboptimal performance in nonlinear systems, and challenges in
managing disturbances and noise, this study explores an
alternative approach. Long Short-Term Memory (LSTM)
controllers, designed to mimic PID controller behavior, are
anticipated to effectively learn and predict nonlinear system
dynamics, exhibit robustness against disturbances and noise, and
automatically adapt their parameters. This paper proposes
emulating a PID controller using an LSTM network, with the
Internet-Based Temperature Control Lab (iTCLab) Kit as the
test platform. The results demonstrate successful modeling and
emulation of an adaptive PID controller using LSTM on the
iTCLab, evidenced by satisfactory control performance,
characterized by a relatively slow rise time, minimal overshoot,
and low steady-state error.

Index Terms— controller, emulation, Kit, temperature, Lab.

I. INTRODUCTION

HE most well-known control system in the industry is the

Proportional Integral Derivative (PID) [1]-[4]. A PID
controller integrates three types of control actions:
proportional, integral, and derivative. Each action offers
distinct benefits: proportional control ensures a quick rise
time, integral control minimizes errors, and derivative control
helps reduce errors or overshoot. The combination of these
three actions aims to achieve output with minimal error and a
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rapid settling time [5].

So far, the most recent studies on PID control systems have
focused on tuning the PID control action parameters
consisting of gain Kp, K, and Kp. The parameters Kp, Kj, and
Kp can also be expressed in terms of controller gain Kc,
integral reset time ti, and derived time constant tp [6]. Tuning
these parameters conventionally usually uses the Ziegler—
Nichols method [7]-[9], Linear Quadratic Regulator (LQR)
[10]-[12], Robust control [13]-[15]. While the latest methods
utilize artificial intelligence or Machine Learning (ML)
methods. ML methods that are widely used for the process of
tuning these PID parameters include Deep Learning [16],
Fuzzy Self-Tuning PSO [17], Artificial Bee Colony algorithm
[18], iterative learning control [19], beetle antennae search
algorithm [20], Genetic Algorithm (GA) [21], reactive nature-
inspired algorithms [22], memorizable-smoothed functional
algorithm [23], Archimedes optimization algorithm [24],
Nonlinear Sine Cosine Algorithm [25], and others.

PID Controller itself has been successfully applied in
various fields, including: combined with fuzzy logic for
electric motor optimization [26], combined with robust
Integral-Backstepping H* for Hydroelectric Power Generation
System [27] and Automated People Mover System [14],
optimized using PSO, SFS, and FPA to control the Gantry
Crane [12], based on LQR with a level of stability determined
through GA, PSO, and SA for optimal control of the Gantry
Crane [12] uses H” Integral-Backstepping that is robust under
uncertainties in payload mass and string length to control
optimal RTGC [28], based on DDPG to control the position
and angle of RTGC sway [29], and others.

The other challenge of research on PID controllers is to
emulate this controller using an intelligent system. In other
words, how to make a PID emulator using an intelligent
system. This has not been done much. If anything, most of
them still use plant simulations. Among them can be
mentioned the use of intelligent system methods Recurrent
Neural Network (RNN) [30], Long Short-Term Memory
Network (LSTM) [31], and Convolutional Neural Network -
Long Short-Term Memory Network (CNN-LSTM) [32]. This
study proposes modeling and emulating adaptive PID
controllers using Long Short-Term Memory Network
(LSTM). The plant used is not a simulated plant but a real
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plant, namely the Internet-Based Temperature Control Lab
(iTCLab) Kit [5].

The rest of the article is structured as follows. Section II
explains the methodology used in the paper. This section is
divided into two subchapters that explain the PID controller
and the implemented LSTM emulation. Section III presents
the results and discussion of the system based on the results of
tests carried out on temperature control. Section IV draws
conclusions about our research.

II. PROPOSED METHODOLOGY

This research aims to tune the Proportional-Integral-
Derivative (PID) controller to obtain the desired iTCLab
temperature, and the controller will adjust the heater until it
reaches the desired point. Then, we want to see if this
behaviour can be emulated by the Long Short-Term Memory
Network (LSTM) network. The success of this prototype will
open up opportunities not only for Controller Emulation, but
also in predictive maintenance, anomaly detection, and
intelligent automation across various industrial and
environmental monitoring applications. By demonstrating that
LSTM can effectively replicate controller behaviour, we
establish a foundation for data-driven models that can adapt to
dynamic conditions, reduce reliance on hardcoded rules, and
enhance decision-making processes in real-time systems.

A. PID Controller

The wuse of Proportional-Integral-Derivative (PID)
controllers has become the standard in temperature regulation
due to their proven ability to maintain stability and fast
response. With a careful combination of proportional settings
to adjust output according to temperature differences,
integration to deal with errors that accumulate over time, and
derivatives to predict future changes, PID controllers can
handle temperature variations efficiently and accurately. Its
wide use in various industries, from manufacturing to
chemical processes, confirms its reliability in maintaining
temperatures at desired values, making it the top choice for
effective and efficient temperature control [33]-[36].

PID controller stands for proportional, integral, and
derivative controller combined. Because each of the three
types of controllers has pros and cons of their own, the
outcomes obtained when using them separately are not
favourable. It is anticipated that combining these three types
of controllers into one control system will enhance their
benefits. Proportional control is a linear amplifier whose gain
can be adjusted. The relationship between the controller output
m(t) and the error signal e(t) is described in the below
equation. Which K,, is the constant variable that stands for
proportional gain.

m(t) = Kye(t) (1)

Next is the integral controller which is the change of the
integral output m(t) related to changes of time to the error
signal e(t). The relationship between two variables is
conducted in the equation below.

m(t) = K,e(t) + i—’_’Z?;l e; (t)At )
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The integral time t; regulates the integral control action,
while K, enhances both the proportional and integral
components of the control action. The reciprocal of the

integral time (Tl) is known as the reset rate, indicating how
i

frequently the integral action reiterates or '"resets" the
proportional action's contribution per second. Last, derivative
control is defined by

PVn,—PVn, 4

v 3)

Derivative control, also known as rate control, generates an
output that corresponds to the speed at which the error signal
changes. The derivative time, T, represents the duration over
which the proportional control response is amplified due to the
rate of change. Then, we can summarize the PID equation
given as follows

m(t) = Kye(t) + KTy

K
m(t) = Kye(t) + T?Z?él e; (t)At —
PVnt‘PVnt_l

Kp Td At (4)

B. LSTM Emulation

To realize the emulation of PID controller behaviour with
LSTM, it is designed according to the research stages shown
in Fig. 1.

Generate PID controller data using iTClab

Train LSTM in Keras to emulate the PID
controller

Test the LSTM

Practical application of iTCLab using LSTM
controller as a replacement for PID controller

Fig. 1. Steps of the proposed method.

From Fig. 1, the stages begin with the preparation of the
dataset. As discussed previously, this research uses the
iTCLab plant. Therefore, the first stage is to prepare a dataset
obtained from running the PID controller on the iTCLab.
Several arrays are prepared to store data over time, and the
controller is run to ensure that a lot of data is obtained. The
temperature setpoint is changed periodically so that a good
mix of steady-state and transient behaviour is obtained. The
method of changing the set-point as a powerful method to
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improve the transient performance has been developed and
proved to be practical in references [37]-[39]. The method
works with the help of the hybrid system approach [40]-[42].

Next, in the second stage, after having some data to work
with, we want to see if LSTM can emulate the behaviour of
the PID controller. LSTM has become a popular approach for
all kinds of machine learning models due to its versatility.
What distinguishes it from standard recurrent neural networks
is the presence of its cell memory units, which help to
overcome the vanishing gradient problem. The vanishing
gradient issue arises during the training of recurrent neural
networks using gradient-based learning techniques and
backpropagation.

In the context of emulating the PID controller, a window of
data is input, such as temperature, setpoint, error, or heater
value, and the next heater value is predicted to reach the
desired setpoint. This prediction emulates the output that
would be given by the PID controller with certain tuning
constants. If the tuning constants change, then the type of
controller behaviour changes. This is an interesting idea to
explore.

In this stage, we look at what features are useful to include
in the model. Intuitively, the PID controller takes the error
between the sensor temperature and the setpoint as input, so it
is likely that the LSTM will need it. In addition, there are
many hyperparameters that can be used to optimize the fidelity
of the LSTM to the PID controller. The appropriate ones are
selected. Next, the LSTM model is created and trained with
the prepared dataset.

Next is the third stage, which is testing the LSTM. Before
using the LSTM to control the iTCLab, we want to make sure
its behaviour is close to what the PID controller will do. This
is not only important for sanity checks, but it is also an
important safety issue. One can imagine using a temperature
controller on a reactor that is not sure if it will work properly.
If it does not work properly and an unintended reaction occurs,
it can cause a lot of chaos.

Fortunately, we already have some prepared data samples,
all in the correct format that the LSTM expects to be input.
Later, we need to see that, considering the input, the LSTM's
heater output prediction is in line with what the PID controller
will do. Make sure no data scaling is used so that the actual
values are obtained.

And the last stage, if we already have a well-functioning
LSTM model, then the last step is to encode it as a controller.
Then, direct testing is carried out to control the iTCLab plant
using the LSTM controller as a replacement for the PID
controller. Next, all that remains is to check and analyse the
results of the LSTM performance replacing the PID Controller
in controlling the iTCLab plant. Therefore, the design of the
PID controller emulation architecture with LSTM is as shown
in Fig. 2.
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Fig. 2. Proportional Integral Derivative Controller (PID) Modeling and
Emulation Architecture with Long Short-Term Memory Network (LSTM).

C. iTCLab

This project implements a PID control system with the
iTCLab Kit, a purpose-built platform for remote temperature
experiments. The kit's design centers on an ESP32
microcontroller, which facilitates Internet of Things (IoT)
connectivity for monitoring and control. Key components are
two TMP36GT9Z sensors for accurate temperature sensing
and two TIP120 transistors that act as heaters. The heaters are
positioned close together to produce complex, second-order
system dynamics ideal for advanced control studies. For
precision, the ESP32 wuses its 12-bit Analog-to-Digital
Converter to process sensor data and Pulse Width Modulation
(PWM) to manage the heaters and an LED. Figures 3 and 4
provide visual references of the kit and its circuit layout.

Fig. 3. Internet-Based Temperature Control Lab (iTCLab) kit.
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Fig. 4. iTCLab Circuit Layout.

D. LSTM

Long Short-Term Memory (LSTM) is a specialized form of
Recurrent Neural Network (RNN) designed to handle long-
term dependencies by retaining information over extended
periods. In LSTMs, the traditional hidden layer nodes in
RNNs are replaced by LSTM cells, which function as storage
units for prior knowledge. Each LSTM cell consists of three
gates: the input gate, forget gate, and output gate. These gates
work together to control how past information is read, stored,
and updated within the memory cell, enabling efficient
management and utilization of historical data [43]-[45].

For conventional RNNSs, the vanishing gradient issue led to
the development of the LSTM architecture. The reason for the
disappearing gradient is because it never converges or
produces better results because the gradient gets less until the
last layer, keeping the weight value constant. Nevertheless, the
optimization procedure turns divergent, or explodes the
gradient, when the increasing gradient drives the weight
values in other layers to increase as well. The architecture of
LSTM model shown in Fig. 5.
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Fig. 5. LSTM Architecture.
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LSTM algorithm has several stages in processing, there are
Input Gate, Forget Gate, and Output Gate [46]. For the Input
Gate equation is conducted below

s = U(Wixs + wihs_y + bi) (%)

The input gate, denoted as i, is determined by the weight w;
applied to the input value x; at time s, combined with the
weight u; applied to the output value hy_; from the previous
time step s-1, plus the bias b; at the input gate, with o
representing the sigmoid activation function. The equation for
the forget gate is provided below.

fo = o(wsxg + uphg_y + by) (6)

The forget gate, denoted as f;, is determined by the weight
wy applied to the input value x; at time s, combined with the
weight u; applied to the previous output h,_; from time s-1,
plus the bias term b; at the forget gate, with the sigmoid
function o as the activation. The output gate is explained
subsequently.

05 = 0-(Woxs +uohs_1 + bo) @)

The output gate, denoted as o, is determined by the weight w,
applied to the input value x, at time s, the weight u, applied to
the previous output value hy_; from time s-1, the bias term b,
at the output gate, and the sigmoid activation function a.

III. RESULTS AND DISCUSSION

As described in the methodology section, in the second
stage, after having some data to work with, we wanted to see
if the LSTM could emulate the behaviour of the PID
controller. We have included a data window, such as
temperature, setpoint, error, or heater value, and predict the
next heater value to reach the desired setpoint. This prediction
emulates the output that a PID controller would give with
certain tuning constants. If the tuning constants change, then
the type of controller behaviour changes. Useful features are
included in the model. Intuitively, the PID controller takes the
error between the sensor temperature and the setpoint as input.
In addition, the appropriate hyperparameters are selected.
Next, the LSTM model is created and trained with the
prepared dataset. From the results of the LSTM training, the
following results are obtained:

Parameters:

Input LSTM PV and error

Output Q (PWM) for heater

Layer LSTM

e Layer 2

e Dropout 2

Optimizer : Adam

Batch Size ;100

Loss : MSE (Mean Squared Error), Train

0.002, Val 0.00069

Next, after the LSTM training process, LSTM testing is
carried out. Before using LSTM to control iTCLab, we want
to make sure its behavior is close to what the PID controller
will do. The results of the LSTM test are shown in Fig. 6.
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Fig. 6. LSTM test results.

From Fig. 6, we can see the setpoint and T1 data (from
which the error value is obtained), and the actual data from the
PID controller with parameters K, = 6, K; = 0.08, and K, =
0.The green color then shows how the LSTM will behave,
with exactly the same input dataset. It seems to follow the
behavior of the PID controller with tight accuracy, so it should
be tried as a proxy controller, with just one adjustment. From
the figure, it can be seen that the LSTM output sometimes
exceeds the [0, 100] range that is bound to the heater. This
should be limited to the [0, 100] range when we encode it as a
controller according to real-world conditions.

Next, in the last stage, if we already have a well-
functioning LSTM model, then the last step is to encode it as a
controller. Then, direct testing is carried out to control the
iTCLab plant using the LSTM controller as a replacement for
the PID controller. From the results of testing the control of
the iTCLab plant using the LSTM controller, the results are
obtained as shown in Fig. 7 and Fig. 8.
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Fig. 7. The results of controlling the PID Emulator with LSTM.
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Fig. 8. System Response Time Analysis.

The results of the system response time analysis according to
the experimental results in Fig. 8 are as follows:

Rise time : 180's

Overshoot 1 (47-45/47)*¥100% = 4.25%

Settling time 1450

Steady state error @ reference value-steady value = 45-
47=2

The system's evaluation confirms the superior performance
of the LSTM controller, which achieves a lower steady-state
error than both the energy balance and linear FOPDT models.
Its response is characterized by a smooth, gradual rise time of
about 180 seconds, a minimal 4.25% overshoot, and a settling
time of 450 seconds. This profile—marked by a slow but
stable ascent, negligible overshoot, and a definitive return to a
narrow band around the setpoint—demonstrates a controller
that prioritizes stability and precision. The resulting steady-
state error is a negligible 2 units, underscoring the LSTM's
accuracy for long-term control in industrial applications.

Additional research and refinement could improve specific
performance elements and fine-tune system parameters.
Nevertheless, this study establishes a strong basis for
progressing the development and application of LSTM control
in real-world industrial systems.

IV. CONCLUSION

The emulation of a Proportional Integral Derivative (PID)
controller using an intelligent Long Short-Term Memory
(LSTM) network to manage the Internet-Based Temperature
Control Lab (iTCLab) plant was successfully implemented.
This is evidenced by minimal overshoot and a low steady-state
error. Despite a relatively slow rise time, the system
demonstrates its capability to deliver stable and precise
control.
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