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Abstract—Driven by the shortcomings of traditional 

Proportional Integral Derivative (PID) controllers, particularly 

their limited responsiveness to changes in system parameters, 

suboptimal performance in nonlinear systems, and challenges in 

managing disturbances and noise, this study explores an 

alternative approach. Long Short-Term Memory (LSTM) 

controllers, designed to mimic PID controller behavior, are 

anticipated to effectively learn and predict nonlinear system 

dynamics, exhibit robustness against disturbances and noise, and 

automatically adapt their parameters. This paper proposes 

emulating a PID controller using an LSTM network, with the 

Internet-Based Temperature Control Lab (iTCLab) Kit as the 

test platform. The results demonstrate successful modeling and 

emulation of an adaptive PID controller using LSTM on the 

iTCLab, evidenced by satisfactory control performance, 

characterized by a relatively slow rise time, minimal overshoot, 

and low steady-state error.  

 
Index Terms— controller, emulation, Kit, temperature, Lab. 

 

I. INTRODUCTION 

HE most well-known control system in the industry is the 

Proportional Integral Derivative (PID) [1]-[4]. A PID 

controller integrates three types of control actions: 

proportional, integral, and derivative. Each action offers 

distinct benefits: proportional control ensures a quick rise 

time, integral control minimizes errors, and derivative control 

helps reduce errors or overshoot. The combination of these 

three actions aims to achieve output with minimal error and a 
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rapid settling time [5]. 

 So far, the most recent studies on PID control systems have 

focused on tuning the PID control action parameters 

consisting of gain KP, KI, and KD. The parameters KP, KI, and 

KD can also be expressed in terms of controller gain KC, 

integral reset time τI, and derived time constant τD [6]. Tuning 

these parameters conventionally usually uses the Ziegler–

Nichols method [7]-[9], Linear Quadratic Regulator (LQR) 

[10]-[12], Robust control [13]-[15]. While the latest methods 

utilize artificial intelligence or Machine Learning (ML) 

methods. ML methods that are widely used for the process of 

tuning these PID parameters include Deep Learning [16], 

Fuzzy Self-Tuning PSO [17], Artificial Bee Colony algorithm 

[18], iterative learning control [19], beetle antennae search 

algorithm [20], Genetic Algorithm (GA) [21], reactive nature-

inspired algorithms [22], memorizable-smoothed functional 

algorithm [23], Archimedes optimization algorithm  [24], 

Nonlinear Sine Cosine Algorithm [25], and others. 

 PID Controller itself has been successfully applied in 

various fields, including: combined with fuzzy logic for 

electric motor optimization [26], combined with robust 

Integral-Backstepping H∞ for Hydroelectric Power Generation 

System [27] and Automated People Mover System [14], 

optimized using PSO, SFS, and FPA to control the Gantry 

Crane [12], based on LQR with a level of stability determined 

through GA, PSO, and SA for optimal control of the Gantry 

Crane [12] uses H∞ Integral-Backstepping that is robust under 

uncertainties in payload mass and string length to control 

optimal RTGC [28], based on DDPG to control the position 

and angle of RTGC sway [29], and others. 

 The other challenge of research on PID controllers is to 

emulate this controller using an intelligent system. In other 

words, how to make a PID emulator using an intelligent 

system. This has not been done much. If anything, most of 

them still use plant simulations. Among them can be 

mentioned the use of intelligent system methods Recurrent 

Neural Network (RNN) [30], Long Short-Term Memory 

Network (LSTM) [31], and Convolutional Neural Network - 

Long Short-Term Memory Network (CNN-LSTM) [32]. This 

study proposes modeling and emulating adaptive PID 

controllers using Long Short-Term Memory Network 

(LSTM). The plant used is not a simulated plant but a real 
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plant, namely the Internet-Based Temperature Control Lab 

(iTCLab) Kit [5]. 

 The rest of the article is structured as follows. Section II 

explains the methodology used in the paper. This section is 

divided into two subchapters that explain the PID controller 

and the implemented LSTM emulation. Section III presents 

the results and discussion of the system based on the results of 

tests carried out on temperature control. Section IV draws 

conclusions about our research. 

II. PROPOSED METHODOLOGY 

This research aims to tune the Proportional-Integral-

Derivative (PID) controller to obtain the desired iTCLab 

temperature, and the controller will adjust the heater until it 

reaches the desired point. Then, we want to see if this 

behaviour can be emulated by the Long Short-Term Memory 

Network (LSTM) network. The success of this prototype will 

open up opportunities not only for Controller Emulation, but 

also in predictive maintenance, anomaly detection, and 

intelligent automation across various industrial and 

environmental monitoring applications. By demonstrating that 

LSTM can effectively replicate controller behaviour, we 

establish a foundation for data-driven models that can adapt to 

dynamic conditions, reduce reliance on hardcoded rules, and 

enhance decision-making processes in real-time systems. 

A. PID Controller 

The use of Proportional-Integral-Derivative (PID) 

controllers has become the standard in temperature regulation 

due to their proven ability to maintain stability and fast 

response. With a careful combination of proportional settings 

to adjust output according to temperature differences, 

integration to deal with errors that accumulate over time, and 

derivatives to predict future changes, PID controllers can 

handle temperature variations efficiently and accurately. Its 

wide use in various industries, from manufacturing to 

chemical processes, confirms its reliability in maintaining 

temperatures at desired values, making it the top choice for 

effective and efficient temperature control [33]-[36]. 

PID controller stands for proportional, integral, and 

derivative controller combined. Because each of the three 

types of controllers has pros and cons of their own, the 

outcomes obtained when using them separately are not 

favourable. It is anticipated that combining these three types 

of controllers into one control system will enhance their 

benefits. Proportional control is a linear amplifier whose gain 

can be adjusted. The relationship between the controller output 

𝑚(𝑡) and the error signal 𝑒(𝑡) is described in the below 

equation. Which 𝐾𝑝 is the constant variable that stands for 

proportional gain. 

𝑚(𝑡) = 𝐾𝑝𝑒(𝑡)                                                        (1) 

Next is the integral controller which is the change of the 

integral output 𝑚(𝑡) related to changes of time to the error 

signal 𝑒(𝑡). The relationship between two variables is 

conducted in the equation below. 

𝑚(𝑡) = 𝐾𝑝𝑒(𝑡) +
𝐾𝑝

𝜏𝑖
∑ 𝑒𝑖

𝑛𝑡
𝑖=1 (𝑡)∆𝑡                            (2) 

The integral time  𝜏𝑖 regulates the integral control action, 

while 𝐾𝑝 enhances both the proportional and integral 

components of the control action. The reciprocal of the 

integral time (
1

𝜏𝑖
) is known as the reset rate, indicating how 

frequently the integral action reiterates or "resets" the 

proportional action's contribution per second. Last, derivative 

control is defined by 

𝑚(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑝𝑇𝑑

𝑃𝑉𝑛𝑡−𝑃𝑉𝑛𝑡−1

∆𝑡
                            (3) 

Derivative control, also known as rate control, generates an 

output that corresponds to the speed at which the error signal 

changes. The derivative time, 𝑇𝑑, represents the duration over 

which the proportional control response is amplified due to the 

rate of change. Then, we can summarize the PID equation 

given as follows 

𝑚(𝑡) = 𝐾𝑝𝑒(𝑡) +
𝐾𝑝

𝜏𝑖
∑ 𝑒𝑖

𝑛𝑡
𝑖=1 (𝑡)∆𝑡 −

                𝐾𝑝𝑇𝑑

𝑃𝑉𝑛𝑡−𝑃𝑉𝑛𝑡−1

∆𝑡
                                           (4) 

B. LSTM Emulation 

To realize the emulation of PID controller behaviour with 

LSTM, it is designed according to the research stages shown 

in Fig. 1. 

 

 

 

Fig. 1. Steps of the proposed method. 

From Fig. 1, the stages begin with the preparation of the 

dataset. As discussed previously, this research uses the 

iTCLab plant. Therefore, the first stage is to prepare a dataset 

obtained from running the PID controller on the iTCLab. 

Several arrays are prepared to store data over time, and the 

controller is run to ensure that a lot of data is obtained. The 

temperature setpoint is changed periodically so that a good 

mix of steady-state and transient behaviour is obtained. The 

method of changing the set-point as a powerful method to 
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improve the transient performance has been developed and 

proved to be practical in references [37]-[39]. The method 

works with the help of the hybrid system approach [40]-[42]. 

 Next, in the second stage, after having some data to work 

with, we want to see if LSTM can emulate the behaviour of 

the PID controller. LSTM has become a popular approach for 

all kinds of machine learning models due to its versatility. 

What distinguishes it from standard recurrent neural networks 

is the presence of its cell memory units, which help to 

overcome the vanishing gradient problem. The vanishing 

gradient issue arises during the training of recurrent neural 

networks using gradient-based learning techniques and 

backpropagation. 

 In the context of emulating the PID controller, a window of 

data is input, such as temperature, setpoint, error, or heater 

value, and the next heater value is predicted to reach the 

desired setpoint. This prediction emulates the output that 

would be given by the PID controller with certain tuning 

constants. If the tuning constants change, then the type of 

controller behaviour changes. This is an interesting idea to 

explore. 

 In this stage, we look at what features are useful to include 

in the model. Intuitively, the PID controller takes the error 

between the sensor temperature and the setpoint as input, so it 

is likely that the LSTM will need it. In addition, there are 

many hyperparameters that can be used to optimize the fidelity 

of the LSTM to the PID controller. The appropriate ones are 

selected. Next, the LSTM model is created and trained with 

the prepared dataset. 

 Next is the third stage, which is testing the LSTM. Before 

using the LSTM to control the iTCLab, we want to make sure 

its behaviour is close to what the PID controller will do. This 

is not only important for sanity checks, but it is also an 

important safety issue. One can imagine using a temperature 

controller on a reactor that is not sure if it will work properly. 

If it does not work properly and an unintended reaction occurs, 

it can cause a lot of chaos. 

 Fortunately, we already have some prepared data samples, 

all in the correct format that the LSTM expects to be input. 

Later, we need to see that, considering the input, the LSTM's 

heater output prediction is in line with what the PID controller 

will do. Make sure no data scaling is used so that the actual 

values are obtained. 

 And the last stage, if we already have a well-functioning 

LSTM model, then the last step is to encode it as a controller. 

Then, direct testing is carried out to control the iTCLab plant 

using the LSTM controller as a replacement for the PID 

controller. Next, all that remains is to check and analyse the 

results of the LSTM performance replacing the PID Controller 

in controlling the iTCLab plant. Therefore, the design of the 

PID controller emulation architecture with LSTM is as shown 

in Fig. 2. 

 

Fig. 2. Proportional Integral Derivative Controller (PID) Modeling and 

Emulation Architecture with Long Short-Term Memory Network (LSTM). 

C. iTCLab 

This project implements a PID control system with the 

iTCLab Kit, a purpose-built platform for remote temperature 

experiments. The kit's design centers on an ESP32 

microcontroller, which facilitates Internet of Things (IoT) 

connectivity for monitoring and control. Key components are 

two TMP36GT9Z sensors for accurate temperature sensing 

and two TIP120 transistors that act as heaters. The heaters are 

positioned close together to produce complex, second-order 

system dynamics ideal for advanced control studies. For 

precision, the ESP32 uses its 12-bit Analog-to-Digital 

Converter to process sensor data and Pulse Width Modulation 

(PWM) to manage the heaters and an LED. Figures 3 and 4 

provide visual references of the kit and its circuit layout. 

 

Fig. 3. Internet-Based Temperature Control Lab (iTCLab) kit. 
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Fig. 4. iTCLab Circuit Layout. 

D. LSTM 

Long Short-Term Memory (LSTM) is a specialized form of 

Recurrent Neural Network (RNN) designed to handle long-

term dependencies by retaining information over extended 

periods. In LSTMs, the traditional hidden layer nodes in 

RNNs are replaced by LSTM cells, which function as storage 

units for prior knowledge. Each LSTM cell consists of three 

gates: the input gate, forget gate, and output gate. These gates 

work together to control how past information is read, stored, 

and updated within the memory cell, enabling efficient 

management and utilization of historical data [43]-[45]. 

For conventional RNNs, the vanishing gradient issue led to 

the development of the LSTM architecture. The reason for the 

disappearing gradient is because it never converges or 

produces better results because the gradient gets less until the 

last layer, keeping the weight value constant. Nevertheless, the 

optimization procedure turns divergent, or explodes the 

gradient, when the increasing gradient drives the weight 

values in other layers to increase as well. The architecture of 

LSTM model shown in Fig. 5. 

 

Fig. 5. LSTM Architecture. 

LSTM algorithm has several stages in processing, there are 

Input Gate, Forget Gate, and Output Gate [46]. For the Input 

Gate equation is conducted below 

𝑖𝑠 = 𝜎(𝑤𝑖𝑥𝑠 + 𝑢𝑖ℎ𝑠−1 + 𝑏𝑖)                                    (5) 

The input gate, denoted as 𝑖𝑠, is determined by the weight 𝑤𝑖  

applied to the input value 𝑥𝑠 at time s, combined with the 

weight 𝑢𝑖 applied to the output value ℎ𝑠−1 from the previous 

time step s-1, plus the bias 𝑏𝑖 at the input gate, with 𝜎 

representing the sigmoid activation function. The equation for 

the forget gate is provided below. 

𝑓𝑠 = 𝜎(𝑤𝑓𝑥𝑠 + 𝑢𝑓ℎ𝑠−1 + 𝑏𝑓)                                    (6) 

The forget gate, denoted as 𝑓𝑠, is determined by the weight   

𝑤𝑓  applied to the input value  𝑥𝑠 at time s, combined with the 

weight 𝑢𝑓 applied to the previous output ℎ𝑠−1 from time s-1, 

plus the bias term 𝑏𝑖 at the forget gate, with the sigmoid 

function 𝜎 as the activation. The output gate is explained 

subsequently. 

𝑜𝑠 = 𝜎(𝑤𝑜𝑥𝑠 + 𝑢𝑜ℎ𝑠−1 + 𝑏𝑜)                                    (7) 

The output gate, denoted as 𝑜𝑠, is determined by the weight 𝑤𝑜 

applied to the input value 𝑥𝑠 at time s, the weight 𝑢𝑜 applied to 

the previous output value ℎ𝑠−1 from time s-1, the bias term 𝑏𝑜 

at the output gate, and the sigmoid activation function 𝜎. 

III. RESULTS AND DISCUSSION 

As described in the methodology section, in the second 

stage, after having some data to work with, we wanted to see 

if the LSTM could emulate the behaviour of the PID 

controller. We have included a data window, such as 

temperature, setpoint, error, or heater value, and predict the 

next heater value to reach the desired setpoint. This prediction 

emulates the output that a PID controller would give with 

certain tuning constants. If the tuning constants change, then 

the type of controller behaviour changes. Useful features are 

included in the model. Intuitively, the PID controller takes the 

error between the sensor temperature and the setpoint as input. 

In addition, the appropriate hyperparameters are selected. 

Next, the LSTM model is created and trained with the 

prepared dataset. From the results of the LSTM training, the 

following results are obtained: 

Parameters: 

Input LSTM : PV and error 

Output :  Q (PWM) for heater 

Layer LSTM : 

• Layer : 2 

• Dropout :  2 

Optimizer : Adam 

Batch Size : 100 

Loss : MSE (Mean Squared Error), Train 

0.002, Val 0.00069 

 Next, after the LSTM training process, LSTM testing is 

carried out. Before using LSTM to control iTCLab, we want 

to make sure its behavior is close to what the PID controller 

will do. The results of the LSTM test are shown in Fig. 6. 
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Fig. 6. LSTM test results. 

From Fig. 6, we can see the setpoint and T1 data (from 

which the error value is obtained), and the actual data from the 

PID controller with parameters 𝐾𝑃 = 6, 𝐾𝐼 = 0.08, and 𝐾𝐷 =
0.The green color then shows how the LSTM will behave, 

with exactly the same input dataset. It seems to follow the 

behavior of the PID controller with tight accuracy, so it should 

be tried as a proxy controller, with just one adjustment. From 

the figure, it can be seen that the LSTM output sometimes 

exceeds the [0, 100] range that is bound to the heater. This 

should be limited to the [0, 100] range when we encode it as a 

controller according to real-world conditions. 

Next, in the last stage, if we already have a well-

functioning LSTM model, then the last step is to encode it as a 

controller. Then, direct testing is carried out to control the 

iTCLab plant using the LSTM controller as a replacement for 

the PID controller. From the results of testing the control of 

the iTCLab plant using the LSTM controller, the results are 

obtained as shown in Fig. 7 and Fig. 8. 

 

 

 

 

Fig. 7. The results of controlling the PID Emulator with LSTM. 

 

Fig. 8. System Response Time Analysis. 

The results of the system response time analysis according to 

the experimental results in Fig. 8 are as follows: 

Rise time : 180 s 

Overshoot : (47-45/47)*100% = 4.25% 

Settling time : 450 s 

Steady state error :  reference value-steady value = 45-

47 = 2 

 The system's evaluation confirms the superior performance 

of the LSTM controller, which achieves a lower steady-state 

error than both the energy balance and linear FOPDT models. 

Its response is characterized by a smooth, gradual rise time of 

about 180 seconds, a minimal 4.25% overshoot, and a settling 

time of 450 seconds. This profile—marked by a slow but 

stable ascent, negligible overshoot, and a definitive return to a 

narrow band around the setpoint—demonstrates a controller 

that prioritizes stability and precision. The resulting steady-

state error is a negligible 2 units, underscoring the LSTM's 

accuracy for long-term control in industrial applications. 

 Additional research and refinement could improve specific 

performance elements and fine-tune system parameters. 

Nevertheless, this study establishes a strong basis for 

progressing the development and application of LSTM control 

in real-world industrial systems. 

IV. CONCLUSION 

The emulation of a Proportional Integral Derivative (PID) 

controller using an intelligent Long Short-Term Memory 

(LSTM) network to manage the Internet-Based Temperature 

Control Lab (iTCLab) plant was successfully implemented. 

This is evidenced by minimal overshoot and a low steady-state 

error. Despite a relatively slow rise time, the system 

demonstrates its capability to deliver stable and precise 

control. 
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