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Abstract— Predicting the unemployment rate with precision is
essential for policymakers, economists, and business leaders, as it
enables effective decision-making in economic planning and
resource distribution. This research conducts a comparative
evaluation of two prominent machine learning methods—Deep
Learning and XGBoost—for forecasting Indonesia's Open
Unemployment Rate (OUR). Drawing on data from Indonesia's
Central Bureau of Statistics, the study builds and assesses two
predictive models: one based on Deep Learning and the other on
XGBoost. Model performance is measured using key metrics
such as Mean Square Error (MSE), Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and Success
Percentage. Findings reveal that XGBoost surpasses Deep
Learning in accuracy for predicting Indonesia's OUR. Although
the Deep Learning model excels at identifying intricate patterns,
XGBoost provides superior interpretability throughout training
and testing. This analysis underscores the advantages and
drawbacks of each method in unemployment forecasting, offering
actionable insights for subsequent research and real-world
economic prediction tools.

Index Terms—Deep Learning,
Unemployment, XGBoost.

Open, Prediction, Rate,

I. INTRODUCTION

pen unemployment is often a major issue in the economy,

as it can lead to decreased productivity and income
among the population, which in turn has the potential to
trigger poverty and various other social problems. This issue
remains a significant challenge for developing countries,
including Indonesia. In Indonesia itself, open unemployment
continues to be an important issue that is actively discussed.
The impacts of unemployment include a decline in
productivity and public income, which may ultimately lead to
poverty and various social issues [1]-[4].

According to Central Bureau of Statistics (CBS),
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unemployment includes individuals who are actively seeking
work, those preparing to start a new business, people who are
not looking for work because they believe they won’t find any,
and individuals who have a job but have not yet started
working [5]. This broad definition highlights that
unemployment isn't limited to those submitting job
applications, but also encompasses discouraged workers and
future entrepreneurs. It reflects a more inclusive understanding
of labor market dynamics.

One of the goals of national development is to improve the
welfare of the people. As a developing country, Indonesia
needs to implement various changes to support national
development. These efforts aim to create national stability, a
conducive investment environment, and high economic
growth in order to reduce the open unemployment rate.
Several factors that influence the level of open unemployment
include economic growth, wage levels, inflation, and
investment.

The Open Unemployment Rate (OUR) refers to the
percentage of the labor force classified as unemployed [S]. A
high OUR indicates that a large portion of the workforce has
not been absorbed into the job market. Therefore, a system to
predict the OUR in Indonesia is needed to identify the number
of workers who have not yet secured employment. This
enables the government, particularly the Ministry of
Manpower, to take anticipatory measures, such as increasing
job opportunities and creating employment for the productive
workforce.

A high Open Unemployment Rate indicates that a
significant portion of the labor force has not been absorbed
into the job market. To gain insights into future projections
regarding the unabsorbed labor force, a predictive system for
the Open Unemployment Rate is necessary. Therefore, this
research holds significant contribution for the Government of
Indonesia, particularly the Ministry of Manpower. The Open
Unemployment Rate prediction system is used to estimate
how many members of the labor force have not yet secured
employment. Consequently, the government—especially the
Ministry of Manpower—can take anticipatory measures by
increasing job opportunities and promoting entrepreneurship
among the productive workforce.
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II. RELATED WORKS

Previous studies on the Open Unemployment Rate or its
predictions can be summarized as follows: Indonesia's Open
Unemployment Rate Forecasting System Based on Deep
Learning [5], How Close to Full Employment? Revisiting
Europe's Unemployment Challenge [6], Investigating the New
Keynesian Phillips Curve in the United States: What Explains
the Diminishing Link Between Inflation and Unemployment?
[7], Labor Unions: Minimum Wage Standards, Seniority
Policies, and Duration of Unemployment [8], An experiment
utilizing  artificial neural networks for forecasting
unemployment rates [9], Semi-supervised multi-target
regression for survival analysis in time-to-employment
prediction using oblique predictive clustering trees [10],
Modeling disability: How artificial intelligence influences
unemployment for people with disabilities? An empirical
study of linear and nonlinear effects [11], The effects of cash
transfers to the unemployed on the labor market: Evidence
from South Africa [12], The influence of increased labor
market rigidity on employment growth in OECD countries
[13], Forecasting one-year employment results after traumatic
brain injury: A CENTER-TBI study [14]. Each comparison of
previous research findings is presented in Table 1.
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Drawing on prior studies outlined in Table I, this paper
investigates an alternative method for forecasting the Open
Unemployment Rate. Its objective is to compare Deep
Learning and XGBoost approaches. The application of Deep
Learning for predicting the Open Unemployment Rate was
addressed in our previous research [5]. This study incorporates
four additional years of more recent data and employs a
slightly modified Deep Learning architecture. Meanwhile, the
XGBoost method is deliberately included as a comparative
approach for predicting the Open Unemployment Rate.

The connections among nodes in a Deep Learning
framework mirror those among PCs in a computer network
structure [5]. However, a large number of nodes typically
increases the complexity and makes continuous analysis more
challenging. Both Deep Learning and XGBoost have
demonstrated effectiveness in addressing time series
prediction tasks. Several examples of Deep Learning
applications in time series forecasting are presented in the
following papers: [5], [15]-[20]. In the meantime, various
examples of XGBoost applications in time series prediction
tasks are presented in the following papers: [21]-[26].

III. PROPOSED METHODOLOGY

One approach to measuring unemployment is the Open
Unemployment Rate (OUR), defined as the percentage of

Fig. 1. Some services of the Central Bureau of Statistics (CBS) of Indonesia.

This study utilizes Open Unemployment Rate data for
Indonesia spanning 1997 to 2024, with the dataset partitioned
as outlined in the Model Structure description.
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B. Model Structure

Utilizing the research data outlined above, a model structure
is developed to meet this objective. The dataset is split
between the Training Phase and Testing Phase. For training,
Open Unemployment Rate data from Indonesia (1997-2016,
20 years) is employed to forecast the rate from 2017-2020 (4
years). For testing, the dataset is advanced by 4 years, using
data from 2000-2020 (20 years) to predict the rate from 2021—
2024 (4 years).

Consequently, the prediction system is structured to use the
preceding 20 years of data to forecast the Open
Unemployment Rate for the subsequent four years.
Accordingly, the configuration of the Training Data and
Testing Data according to this design is illustrated in Fig. 2.

Subsequently, grouping the Open Unemployment Rate data
every two years from 1997 to 2016 yields ten input groups.
Likewise, the four-year predicted Open Unemployment Rate
data is organized into two output groups. This configuration
serves as the system model—a structure with ten inputs and
two outputs—for the Deep Learning and XGBoost
architectures.

Time Series Data

»
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N 3

Open Unemployment
Rate {OUR)

4 years 4 years

Training Data

shifted 4 years Testing Data

Fig. 2. Data model structure setup.

C. Deep Learning and XGBoost Architecture

Based on the model structure described above, the Deep
Learning and XGBoost systems are designed with ten inputs
and two outputs.

Input data
(training and
testing data)

2 output
neurons

10 hidden
neurons

10 hidden
neurons

10 input
neurons

Fig. 3. Deep Learning Architecture.
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Fig. 4. XGBoost Architecture.

As illustrated in Fig. 3, the nodes are colored blue and
yellow. The blue nodes in the hidden layers employ the ReLU
activation function, whereas the yellow nodes in the input and
output layers utilize the ReLU and Sigmoid activation
functions, respectively.

Fig. 4 shows the XGBoost architecture. XGBoost is a
supervised learning algorithm that uses a boosting technique
to produce more accurate predictive models. In the process, a
model trained on labeled data is used to predict new data that
has not been previously analyzed. Boosting itself is an
ensemble learning approach that builds a series of models
sequentially, where each subsequent model aims to correct the
weaknesses of the previous one. XGBoost falls into the
category of core tree boosting algorithms that follow this
principle. In addition, XGBoost extends the generalized
gradient boosting method by adding a regularization element.
This addition aims to reduce the risk of overfitting and
supports the use of various types of loss functions that have
differentiable derivatives. These features make XGBoost more
reliable and superior in enhancing model performance.

D. Training and Testing Flowchart

Using the Deep Learning network architecture depicted in Fig.
3, the training and testing processes for Deep Learning are
structured as shown in Fig. 5.
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Fig. 5. Flowchart of the training and testing process for Deep Leaming.
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Fig. 6. Flowchart of the training and testing process for XGBoost.

According to Fig. 5, the Deep Learning network is trained
with input-output pairs from the training data model. During
training, weights and biases are optimized using suitable
activation functions. The network's output is compared to the
target output until the error falls within an acceptable
threshold. The optimal weights are then applied in the testing
phase, where new data is fed through each layer to generate a
prediction—the Open Unemployment Rate in this study.

Likewise, as depicted in Fig. 6, the XGBoost network
follows a comparable training and testing workflow. The
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training phase involves multiple steps: constructing the
XGBoost model, configuring its parameters, initializing the
model, and performing the training. Once training is complete,
testing proceeds by inputting new data. The XGBoost model
then generates predictions, yielding the network's output—the
Open Unemployment Rate in this study.

The performance evaluation outcomes for each prediction
method are presented as Mean Square Error (MSE), Root
Mean Square Error (RMSE), Mean Absolute Percentage Error
(MAPE), and Success Percentage (%).

IV. RESULTS AND DISCUSSION

The Deep Learning network was trained with 10 inputs and
2 outputs using Open Unemployment Rate data. The training
dataset comprises Indonesia's Open Unemployment Rate from
1997 to 2016 (20 years), employed to forecast the rate from
2017 to 2020 (4 years). Data points are processed via a two-
year interval structure. The outcomes of the training process,
conducted over 500 epochs, are presented in Fig. 7, Fig. 8, and
Fig. 9.
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Fig. 7. The process of reducing the loss in the mean squared error in the
Deep Learning training process.
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Fig. 8. The output of the Deep Learning training process.
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Training Stage Prediction Error Using Deep Learning
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Fig. 9. The error prediction of the Deep Learning training process.

Using the same training data, the training process for
XGBoost was carried out. The results are shown in Fig. 10 and
Fig. 11.

Training Stage Prediction Results Using XGBoost
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Fig. 10. The output of the XGBoost training process.
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Fig. 11. The error prediction of the XGBoost training process.

The training results of Deep Learning and XGBoost for the
Open Unemployment Rate prediction system are briefly
presented in table form, as shown in Table II.

TABLE I
RESULTS OF THE TRAINING PROCESS

. Success

Method ~ Lteration/ yqp RMSE  MAPE  Percenta

maxdepth ge (%)

Deep 500 0.043927 0209588  3.31 96.69
Learning

XGBoost 10 0.045108 0212387  3.14 96586

From the training results in Table II, it can be seen that
XGBoost delivers better performance than Deep Learning in
predicting the Open Unemployment Rate, as indicated by a
slightly higher success percentage. Although the difference is
minimal, Deep Learning required 500 iterations to achieve its
performance. In contrast, XGBoost was configured with a tree
depth of 10. Deeper trees can better model complex feature
interactions, but if too deep, they may lead to overfitting.
Additionally, larger trees require more time for the training
process.

In the testing phase, Indonesia's Open Unemployment Rate
data from 2000 to 2020 (20 years) was utilized to forecast the
rate from 2021 to 2024 (4 years). The testing results for Open
Unemployment Rate predictions using Deep Learning and
XGBoost are displayed in Fig. 12 through Fig. 15.
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Testing Stage Prediction Results Using Deep Learning
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Fig. 12. The output of Deep Learning testing process.
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Fig. 13. The error prediction of Deep Learning testing process.
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Fig. 14. The output of XGBoost testing process.
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Testing Stage Prediction Error Using XGBoost
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Fig. 15. The error prediction of XGBoost testing process.

The testing results of Deep Learning and XGBoost for the
Open Unemployment Rate prediction system are briefly
presented in table form, as shown in Table III.

TABLE III
RESULTS OF THE TESTING PROCESS

Success

Method MSE RMSE MAPE Percentage
(%)
Deep Learning 0.732861  0.856073 13.64 86.36
XGBoost 0.508745  0.713264 11.56 88.44

V. CONCLUSION

This paper demonstrates that XGBoost delivers slightly
better performance than Deep Learning in predicting the Open
Unemployment Rate, as indicated by the success percentage.
Overall, both the training and testing phases provide a basis
for comprehensive performance evaluation. During the
training phase, XGBoost outperformed Deep Learning by a
margin of 0.17 percent. In the testing phase, XGBoost also
showed superior performance, with a margin of 2.08 percent.
Therefore, this study concludes that XGBoost consistently
outperforms Deep Learning in both the training and testing
stages for the case of Open Unemployment Rate prediction.
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