Vol.16/No.1 (2024)

INTERNETWORKING INDONESIA JOURNAL 23

Test Case Generation Using Java Path Finder
and Symbolic Path Finder

Arnaldo Marulitua Sinaga and Rosni Lumbantoruan

Abstract— Test suite plays an important role in software
testing. Good test cases may improve the quality of software by
detecting failures earlier. Automation test case generation can
help to generate good test cases is needed. Symbolic Path Finder
(SPF) is a model checker developed by the National Aeronautics
and Space Administration (NASA) as an extension of Java Path
Finder (JPF). SPF uses symbolic execution, model checking and
constraint solver to produce test cases. This study is intended to
perform SPF and to verify the effectiveness of the test case
produced by the SPF. Mutation testing, a fault-based testing
technique, is conducted to investigate the adequacy of produced
test cases. The programs under test in this study are Median,
Armstrong, Multiple, Nested If, and Simple Calculator. All those
programs are written in the Java programming language. The
test suite for each of the programs under test has been generated
by applying SPF. The mutation score obtained for produced test
suites of each program ae as follows: 74.82% for the Median
Program, 77.78% for the Armstrong Program, 31.20% for the
Multiple Program, 92.00% for the Nested If Program, and
55.82% for the Simple Calculator Program. These experimental
results indicate that the test suite generated by the SPF is unable
to detect all existing faults. From the observations, this problem
is because SPF only applies decision coverage in determining
path during the process of forming test cases. Potential
improvement may be obtained by applying other types of
coverage criteria.

Index Terms— Test case generation, Java Path Finder,
Symbolic Path Finder, Mutation testing

I. INTRODUCTION

OFTWARE testing is the process of identifying the

accuracy, completeness, and quality of the built software.
Software testing is part of software engineering that includes
validation of each stage of the Software Development Life
Cycle (SDLC) [1]. The purpose of software testing is to detect
failures [2][3]. Tests are performed using test suites which are
a set of test cases. Test cases consist of an assembly of
observed inputs and outputs that will then compare the actual
output with the expected output [4].

A test case can be generated manually or automatically.
Generating a test case manually depends on the ability of the
tester to locate a failure after the program is executed [4].
While generating a test case automatically uses a tool that can

A. M. Sinaga is with Faculty of Vocational Studies at Institut Teknologi
Del (IT Del), Indonesia (e-mail: aldo@del.ac.id*).

R. Lumbantoruan is with Faculty of Informatics and Electric Engineering
at Institut Teknologi Del (IT Del), Indonesia (e-mail: rosni@del.ac.id).

generate a more effective test case and can cover the entire
program code [5], a test case is required to cover the entire
code of the program in order to optimize the failure detection.
The more program code covered, the more likely it is to find a
fault [6][7][8].

One of the tools used to generate test cases automatically is
the Symbolic Path Finder (SPF). SPF is an extension of the
Java PathFinder (JPF) for symbolic execution. JPF is a
checker model developed by the National Aeronautics and
Space Administration (NASA) [9][10]. JPF executes Java
programs and searches for all possible paths that can be
executed on programs as well as verifies their authenticity,
such as deadlocks and exceptions. SPF is a combination of
symbolic execution, model checking, and constraint solving to
generate test cases automatically. SPF uses an analysis engine
from JPF, which is a checking model to examine the internal
code structure of the program to find errors. After checking all
possible paths, the SPF uses a constraint solver to generate
input test cases according to the constraints of the path passed.
The resulting output contains information about the resulting
parameter input where each path on the program code has
been executed [11].

This research plays a role in experimentally investigating
the use of SPF in software testing. To analyze the
effectiveness of using SPF in generating test cases, mutation
testing is performed. Mutation testing modifies the original
program by inserting a fault into the program and then
performs a process of testing to evaluate the ability of the test
case and find that fault. The code of the program containing
the fault is called a mutant program. The results of the testing
process for the mutant program are called actual outputs,
whereas the results of testing of the original program are
called expected output.

This paper consists of six sections. Section 2 explaining the
studied methods, namely Java Path Finder and Symbolic Path
Finder. Section 3 explains the conducted experiment. Section
4 explains the results obtained from the experiment. Section 5
explains the discussion of the obtained results. Section 6
explains the conclusions and potential further research.

Il. STUDIED AUTOMATION TESTING METHODS

A. Automation Testing

Automation testing is the process of writing and executing
test cases using software. Automation testing can be done
quickly and repeatedly. The software used to carry out
automation testing in this research is Symbolic Path Finder
(SPF) which is an extension of Java Path Finder (JPF).

ISSN: 1942-9703 / CC BY-NC-ND @

24 INTERNETWORKING INDONESIA JOURNAL

B. Java Path Finder

The Java Path Finder (JPF) is a model checker developed
by the National Aeronautics and Space Administration
(NASA). JPF is an open-source research platform. In JPF, a
Java program is given to be executed, and then a JPF file (with
extension of .jpf) is generated to verify the program in order to
detect failure in the program. JPF explores all paths in the
program. When faced with the branch, the JPF checks if it has
been through the same path or not. If yes, then it will go back
to a previous point that it has never been through, called a
backtrack. JPF is a model checker that distinguishes itself
from testing in general [12]. The differences of JPF with
general testing methods can be seen in Fig. 1 [10].

testing:
based on input set {d}
{d} /) only one path
executed at a time

(a) Testing Process
model checking:

all program state are explored
until none left or defect found

backtra(‘:’lg,,.vp\N

""" O= match 6

(b) Model Checking Process

Fig. 1. JPF testing methods (a) testing process, (b) model checking process
(Source:
https://babelfish.arc.nasa.gov/ trac/ jpf/ wiki/ intro/ testing vs m

odel _checking)

According to Fig. 1, testing will execute a program based
on the given input in which testing only executes one path on
a program's control flow model at a time. This is called a
concrete execution. Model checking explores all possible
paths on the control flow models of a program in a backtrack
until no more errors are found or called symbolic executions.
It is performed to find more errors on the test program.

The input given to JPF is a class file (Java bytecode) of a
test program and a configuration file to determine the

Sinaga and Lumbantoruan

execution mode that JPF performs to the program as well as
the properties of the artifact needing to be produced. To
generate the desired artifacts, JPF provides several usable
extensions. The commonly used extensions of JPF are as
follows [12]:

e Choice Generators are used to generate choices or
choices on each branch formed by a test program.

e Instruction Factories are a set of semantic instructions
consisting of sets of operations such as calling methods
or variable access processes performed on test
programs.

o Attribute Objects are metadata related to values and
concrete objects. It means that JPF provides a
mechanism to store operand values, local variable
values, and metadata of a test program. This extension
allows JPF to do a backtrack because when JPF
performs a backtrack, the condition or information of
the last attribute passed by JPF will be stored.

o Native Peers is an abstraction library that supports JPF
executing programs on JVM.

e Listeners is the execution monitoring that JPF uses as a
plugin for monitoring internal operations in JPF.

C. Symbolic Path Finder

Symbolic Path Finder (SPF) is an open-source automatic
test case generation tool [11][13]. SPF can handle input and
operations from Booleans, integers, reals and complex data
structures with a polymorphic class hierarchy [14]. SPF uses
the analysis engine from JPF to examine the internal structure
of program code to find errors. The output of the program
code represents the numerical constraints of the input
parameters in the program code. Then these constraints are
used to produce concrete test cases as input parameters of the
program code [11]. SPF not only uses symbolic execution
mode, but SPF also supports combined execution modes,
namely concrete execution and symbolic execution. The input
parameters used for concrete execution are input parameters
with concrete values that are given fixed values, for example
constant values, and the input parameters used for symbolic
execution are input parameters whose symbolic values
correspond to the conditions of the path traversed [14].

Symbolic execution is a program analysis technique where
input variables that have concrete values are replaced into
symbolic variables [12][15]. The principle is that when
determining a path that contains the symbolic value of all
executed paths, the paths that have been traversed will be
saved. In symbolic execution, Path Condition (PC) is known
as a constraint condition for input on a branch, so that the PC
is always updated according to the branch being traversed.
The path traversed during symbolic execution is represented in
the form of a symbolic execution tree [12]. An example of a
simple program to form a symbolic execution tree from a
program executed is using the symbolic execution technique
illustrated in Fig. 2.

https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking
https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking
https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking
https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking

Vol.16/No.1 (2024)

int example(int x, int y) {

assert (false);
return x + ¥;

}

1: int temp = x;
2: if (y > O

3: x=x+ y;
4: ¥ = temp;

5: if (x <)

6:

T:

(a) Code example for symbolic execution

=XwnY
PC: true

!

x=X,y; Y, temp: X

PC: true
I
2 ¢ vy 2
x=X, v Y, temp: X x=X,y; Y, temp: X
PC:Y =0 PC:Y <=0
3 3 la
= X+ -
=X Y’_y’ ¥, x=X,y; Y, temp: X
temp: X PC:Y <=0
PC:Y >0)
4 S ¥ | v °
— T
x t):n: ’_);’(X’ x=X,y; Y, temp: X x=X,y; Y, temp: X
b PC:Y<=0& X=X PC:Y==0&X>=X
PC:Y =0

| path condition not

|-

satisfiable
5 S

x=X+Y, v; X, temp: X

x=X,y; Y, temp: X
PC:Y<=0&X>=X

x=X+Y, y; X, temp: X

PC:Y>0&X+Y <X PC:Y>0&X+Y »=X

path condition not L 7
satisfiable

x=X+Y, y; X, temp: X
PC:Y>0&X+Y>=X

(b) Symbolic execution of program

Fig. 2. Symbolic execution tree for example code (a) code example,
(b) symbolic execution of program (Source: Evaluation of Java
PathFinder Symbolic Execution Extension)

In Fig. 2(b) is a symbolic execution tree formed from the
program in part a. First, the int x and int y parameter values
are converted into symbolic values x to X and y to Y with the
PC value true. Then the x value is given to the temp variable
and the PC remains true. Then the branch is identified so that
two branches are formed which are the value of the path
condition and the negation of that path condition. On line 2,
the specified PC condition is (Y > 0) then the negative (Y <=
0). After the PC (Y> 0) is passed, the line 3 is run (X = X +Y)
and continues with (Y = temp) which means that Y becomes
X. On line 3 and 4 the PC remains (Y > 0). The value
generated at (X+Y < X) does not intersect, so the path is
categorized as an infeasible path and no test case is generated
on the path. After all path passes, the symbolic execution
backtracks until the negation of the path on line 2 is PC value
(Y <= 0). When executing this PC, line 3 is not executed so
that X remains X value. Then on line 4, Y becomes X and on
line 5, the same branch as the previous path is identified. The
first path of the branch is also called an infeasible path [15].

INTERNETWORKING INDONESIA JOURNAL 25

I1l. THE EXPERIMENTS

A. Program Under Test

The methodology in this study is an experimental method
that is conducted to investigate the SPF tool in producing a
test case. The study used five research objects written using
the Java programming language and integer parameter input,
namely Median Program, Armstrong Program, Multiple
Program, Nested If Program, and Simple Calculator Program.
The five programs were obtained from different sources where
Median program was downloaded from the Software-Artifact
Infrastructure Repository (SIR) [16], Armstrong program was
downloaded from GeeksforGeeks [17], and Multiple
programs, nested if program, and simple calculator program
were programs created by researchers for research purposes.

B. Experiments Analysis

To be able to generate test cases, SPF requires a class file
(Java bytecode) and a configuration file with the extension
Jpf. This file contains options that are used to verify the
program and enabling it to generate test cases from the
program. Some commonly used options in a configuration file
are as follows:

o classpath is used as a path to the directory containing the
compilation files of the Java program.

e sourcepath is used as a path to the directory containing the
Java program being executed.

e target is used to indicate the package name and Java
program being executed.

e symbolic.method is used to show the parameters of a
method that is executed symbolically.

e symbolic.min_int and symbolic.max_int are used to
provide test case value limits.

e SymbolicListener is used to display information of the path
condition that is executed symbolically.

o SymbolicSequenceL.istener is used to display test cases.

e search.multiple_errors is used to prevent SPF from
hindering the execution of a Java program if it encounters
the first error.

The symbolic execution tree produced by SPF is used to
determine the number of test cases generated in a program.
Symbolic execution trees are formed based on the code
structure of the program being tested. In this research, the
symbolic execution tree is drawn manually for programs with
few lines of program code, contrasting with programs with
many lines of program code in which it is impossible to draw
the symbolic execution tree manually. As a result, verification
of the number of test cases produced in a program is carried
out by conducting trials using several limit values. Limit value
experiments were carried out using the symbolic.min_int and
symbolic.max_int options.

The symbolic.min_int and symbolic.max_int options are
used for programs with integer input parameters. These two
options are used to determine the limit value or range of
values for the candidates of test cases that will be generated.
The symbolic.min_int option is used to provide a minimum
value limit for the test case and symbolic.max_int is used to

ISSN: 1942-9703 / CC BY-NC-ND @

26 INTERNETWORKING INDONESIA JOURNAL

provide a maximum value limit for the test case. These two
options are additional options provided by SPF. In the
experiments carried out, the symbolic.min_int and
symbolic.max_int options were given in each study object
configuration file to determine the number of test cases
produced. To determine the maximum and minimum limit
values, a series of experiments were carried out.

Several experiments carried out on the Median Program can
be seen in Table I. In the Median Program, experiments were
carried out on 18 candidates within the limit value range and
15 candidates were obtained, producing six test cases as in
Table I. Based on these experiments, the maximum number of
test cases in the Median Program is six. The limit value range
chosen in this experiment is a minimum value of -1 and a
maximum value of 1. Verification of this program can also be
done based on the program's symbolic execution tree.

TABLE |
LIMIT VALUE FOR MEDIAN PROGRAM

Min Value Max Value Number of TC
-50 50 6
-40 40 6
-30 30 6
-20 20 6
-10 10 6

-5 5 6
-1 0 5
-1 1 6
0 0 1
0 1 5
0 5 6
0 2 6
0 10 6
0 20 6
0 30 6
0 40 6
0 50 6
- - 6

The symbolic execution tree of the Median Program is
presented in Fig. 3. It can be seen that the paths of the Median
Program consist of six paths and all of these paths can be
traversed. These are called feasible paths. The six paths in the
Median Program are as follows:

- PCL:Y<ZAX<Y

- PC2:Y<ZAX>YANX<Z

- PCY<ZAX>YAX>Z
- PC4:Y>=ZA

- PC5:Y>=ZAX<=YAX>Z
- PCOLY>=ZAX<=YANX<=Z

The same analysis process is conducted to all programs
under the test. The Armstrong program is a program with
repetition code to ensure that the number of test cases is
dependent on the number of iterations carried out. In the
Armstrong Program, experiments were conducted on 13

Sinaga and Lumbantoruan

candidate limit value ranges, and it was found that three
candidates produced invalid test cases. An invalid test case is a
test case consisting of a value exceeding the maximum limit of
the integer value type. This test case is inoperable because it
causes the program to error. Limit values that produced
invalid test cases were eliminated from the selected limit value
candidates because the test cases could not be used, 10 more
candidates to be selected. The range of limit values chosen for
use in experiments is a minimum value of 0 and a maximum
value of 1000. Verification of this program can also be done
based on the program’s symbolic execution tree. The symbolic
execution tree of the Armstrong Program has also been
analysed.

xX, y:Y, zZ
PC:true
¥
xX, 1Y,
z:Z, m:Z
PC:true
I
£ v
xX, yviY,
2Z. m:Z <X, viY,
gty z:Z, m:Z
peY<z PC:Y>=Z
2 v %
xX, v, xX, ¥vY, xX, Y, xX, vY,
zZ, mZ zZ, m:Z z:Z, m:Z z:Z, m:Z
PC:Y<Z © PCiY<Z ~ PC: PC:
X<Y ==Y Y>=Z XY Y>=Z K<=Y
xX, yY, xX, yiY, xX, vY, xX, Y, xX, Y, xX, 1Y,
zZ, mY zZ, m:Z z:Z, m:Z z:Z, m:Y zZ, m:Z zZ, m:Z
PC:Y<Z ™ PC:Y<Z"X>=| | PC:Y<ZX>= PC.Y>=Z"X>| | PC:Y>=Z"X< PC:Y>=Z"X<
XY Y "X<Z Y X>=Z Y =Y "X>Z =Y"X<=Z
xXy:Y,z:Z,
31’1')(xX, yviY, xX, yY, xX, yviY,
P.C' z:Z, m:Z z:Z, m:X zZ, m:Z
A —va | | PCY<ZhX= PC:Y>=Z"X< PC:Y>=Z"X<
Y<ZXX;‘Y YAKA=Z =Y X-Z =YAX<=Z
<

Fig. 3. Symbolic Execution Tree of Median Program

The paths that can be identified for the Armstrong Program
with one iteration are three paths. The three paths are as
follows:

- PC1:A=0

- PC2: A =0 A (A/10)=0

- PC3:A!=0A(A/10)!=0

The Multiple Program consists of three methods that are
executed sequentially in the main driver program, namely the
checkMonth method to return the name of the month from the
input value, the checkEvenOdd method to check odd or even
numbers and the checkNumber method to check positive or
negative numbers. The number of test cases generated depends
on the last method executed in the program, namely the
checkNumber method, so the number of test cases for the
other two methods will be the same as the number of test cases
for the checkNumber method. Therefore, the number of test
cases for each method in this program is three. In the Multiple
Program, experiments were carried out on 28 candidate limit
value ranges, and it was found that 14 candidates produced
invalid test cases. Limit values that produced invalid test cases
were eliminated from the selected candidate limit values
because the test cases could not be used. so that the limit value

Vol.16/No.1 (2024)

candidates become 14 candidates. The range of limit values

selected to use is @ minimum value of 0 and a maximum value
of 40. For Multiple Programs, verification of the number of
test cases can also be performed based on the symbolic
execution tree. The symbolic execution tree for this program is
described based on the method being executed.

Based on the experimental analysis for Nested If Program,
the number of test cases for this program was 41. Since this
program is a program that has many lines of program code, the
symbolic execution tree was not drawn manually. In the
Nested If Program, experiments were conducted on 27
candidate limit value ranges, and it was found that 15
candidates produced invalid test cases. Limit values that
produced invalid test cases were eliminated from the selected
candidate limit values because the test cases could not be used
for experiments, leaving 12 candidates. The range of limit
values selected for use in the experiment is a minimum value
of 0 and a maximum value of 11.

From the analysis carried out, the number of test cases
produced by SPF for the Simple Calculator Program was five.
In the Simple Calculator Program, experiments were carried
out on 17 candidate limit value ranges, and it was found that
seven candidates produced five test cases. Based on this
analysis, the maximum number of test cases in the Simple
Calculator Program was five. The range of limit values
selected in experiments is a minimum value of -1 and a
maximum value of 1.

C. Experiment Design

The experiment’s algorithm is described as follows:

a. The initial process carried out is to download and install
jpf-core and jpf-symbc with the aim of being able to run
the SPF tool used in this final assignment. The IDE used
to run SPF is NetBeans version 8.1 and uses Java version
"1.8.0_171".

b. The next stage is determining the object of study. The
selected study object is the program used during the
research on this final assignment. The object of study is
selected by reading the program code to find out the
internal structure of the program. The study objects used
in this research were five programs.

c. After selecting a study object, a mutant program is
generated for each study object. The mutant program was
generated using an open-source Java project called pJava
(muJava). mulava is a program that is utilized to
generate mutants for Java programs automatically by
altering operators in the program or mutation operators
[18].

d. Next, test cases are generated using SPF from each
original program of the study object. Verification of the
effectiveness of this test case is carried out by mutation
testing.

e. The test cases produced by SPF can be seen in the
NetBeans IDE output display. For research purposes,
where there is a testing process for mutant programs, the
test cases are stored in a directory to make it easier to
read the test cases.

INTERNETWORKING INDONESIA JOURNAL 27

f. Next, the original program and mutant program for each
study object read the test cases stored in the storage
directory.

g. After successfully reading the stored test case, the test
case is executed on the original program and the mutant
program. In the original program, to be able to execute
the test case, modification on the main driver of the
original program is required. The test cases are later
executed on the mutant program in the same way as the
test cases were executed on the original program. The
execution results of the original program are recorded as
expected output, and the execution results of the mutant
program are recorded as actual output.

h. The next stage is to compare the output between the
original program (expected output) and the mutant
program (actual output). The output comparison is done
automatically. The output of the original program and the
output of the mutant program are stored in the form of a
xt file. Then, a comparison is carried out by checking
the similarities of the contents of the output files. If the
output between the original program and the mutant
program is different, the test case is effective because it
can detect faults and is classified as a killed mutant. If
the outputs match, then it is classified as a live mutant.
The aim of this stage is to calculate the mutation score
for each study object. Mutation score determines the
percentage of test case effectiveness produced by SPF in
the program.

i. After obtaining the mutation score for each study object,
conclusions stating the effectiveness of the test case are
drawn.

IV. EXPERIMENTAL RESULT

Experiments were carried out on five study objects. Then
test cases were generated for each study object where the
effectiveness of the resulting test cases was checked. The
effectiveness of test cases was checked by applying mutation
testing. The number of mutants produced for each study object
varied. The number of test cases, number of mutants, number
of killed mutants and live mutants for each study object are

recorded in Table II.
TABLE I
MUTANTS FOR PROGRAM UNDER TEST

Noof TC No of No of No of live

Program Mutant killed mutant
mutant
Median 6 147 110 37
Armstrong 6 135 105 30
Multiple 3 125 39 86
Nested If 41 200 184 16
Simple 5 206 115 91
Calculator

After mutation testing is conducted to each of the programs
under test, the mutation score was calculated by using the
following formula [19][20]:

ISSN: 1942-9703 / CC BY-NC-ND @

28 INTERNETWORKING INDONESIA JOURNAL

Total killed mutant
Total mutant

Mutation score = 100 =

The mutation score resulted from the mutation testing for each
of the programs under test is presented in Table III.

TABLE Il
MUTATION SCORE RESULTS

Mutation Score (%)

Program
Median 74.82
Armstrong 77.78
Multiple 31.20
Nested If 92.00
Simple 55.82
Calculator

In Table IlI, the mutation score value for each program is
recorded. The Median Program mutation score reached
74.82%, the Armstrong Program 77.78%, the Multiple
Program 31.20%, the Nested If Program 92.00% and the
Simple Calculator Program 55.82%. Of the four programs
above, the highest mutation score is obtained by the Nested If
Program whereas the lowest is produced by the Multiple
Program.

V. DISCUSSION

Limit value is an additional option provided and is a range
of values that will be used for the values of candidate test
cases generated by SPF. Without using limit values, the values
of the candidate test cases used are the minimum and
maximum values of the integer type. In this experiment, a
weakness in SPF was identified in generating test cases,
proven by the existence of invalid test cases. An invalid test
case is a test case that has a value exceeding the maximum
limit of the integer type, meaning that the test case is
inoperable. Invalid test cases are generated because the
minimum limit value given is negative, such as the
experiments carried out in the Armstrong, Multiple, and
Nested If programs. The limit value chosen is the value that
produces a valid test case. This causes not all program paths to
be traversed due to the lack of test cases used to meet all paths
in the program. The resulting test case value will depend on
the limit value used. Therefore, selecting a different limit
value will give different results.

From Table 11, it was recorded that there was no testing on
program under test that obtained a mutation score reaching
100%. From the results of the analysis carried out, the test
cases produced by SPF meet the Decision Coverage (DC)
criteria. A test case that meets the decision coverage condition
is a test case that focuses on the condition of each branch in
the program code being tested, which means that each branch
must be executed at least once. Test cases that meet decision
coverage are test cases that fulfill the decision on the branch
and not on each clause, which forms the branch. In this case,
decision coverage still has limitations, where there are still

Sinaga and Lumbantoruan

other coverage criteria that should be investigated, such as the
Decision Condition Coverage (DCC) criteria. Examination
using the Decision Condition Coverage criterion is a criterion
where the test case not only meets the decision conditions of a
branch, but also fulfills every clause that forms the branch.
The experimental results indicate that the test suite produced
by SPF was unsuccessful in detecting all existing faults
because SPF only applied decision coverage in determining
the path during the test case formation process.

To produce test cases, SPF creates a symbolic execution
tree to determine the number of paths formed by a program. In
this research, the symbolic execution tree is drawn manually
for programs with few lines of program code such as the
Median Program, Armstrong Program, and Multiple Program.
Meanwhile, for programs with many lines of program code,
such as the Nested If Program and the Simple Calculator
Program. Verification using a manually drawn symbolic
execution tree allows room for human error when drawing it,
creating a different obtained path with the path generated by
SPF. This can result in an invalid test case verification. In this
research, verification of the number of test cases for a program
was also obtained by carrying out a series of experiments on
several ranges of limit values. The use of different minimum-
maximum value ranges will affect the number of test cases
and test case values produced in a program. Verification when
test cases have reached the maximum number is carried out if
the number of test cases produced remains the same despite
the increase in the range values given. Human error may occur
in a test case variation, where the range of minimum-
maximum values given is incorrect, causing the results
obtained to change and be invalid.

VI. CONCLUSION

SPF forms a symbolic execution tree to generate test
cases. The resulting test cases are test cases that meet the
conditions at each branch of the symbolic execution tree. This
means that the test cases produced by SPF are test cases that
meet the decision coverage where each branch must be
executed at least once. The weakness of the SPF tool that was
discovered during experiments in this final project was that
invalid test case values were obtained, namely values
exceeding the maximum integer limit for several programs
which used a negative minimum value limit for their candidate
test cases. To verify the test cases produced by SPF, mutation
testing is carried out. Based on the experiments carried out, it
was found that the mutation score value for the study object
under study did not reach 100%. This means that the test cases
produced by SPF for the study object are insufficient because
the test cases produced by SPF are test cases that meet the
decision coverage criteria which still have limitations
compared to other coverage criteria.

In this research, it was found that not all faults in mutant
programs could be detected using test cases generated by SPF.
Therefore, it is necessary to carry out more in-depth research
on the test cases produced by SPF using examination of path
coverage criteria. It is necessary to verify the path with a
symbolic execution tree produced by a tool (automation) to

Vol.16/No.1 (2024) INTERNETWORKING INDONESIA JOURNAL

reduce the possibility of manual process errors. Determining
the limit value for generating test cases needs to be
investigated further. It is important to find a way to obtain the
most optimal limit value.

ACKNOWLEDGMENT

This research is fully supported by the Institut Teknologi Del,
Indonesia in providing the necessary facilities.

REFERENCES

[1] T. Parveen, S. Tilley and G. Gonzalez, “A Case Study in Test
Management,” ACMSE 2007, pp. 82-87, 2007.

[2] 1. Hooda and R. S. Chhillar, “Software Test Process, Testing Types and
Techniques,” International Journal of Computer Applications, vol. 111,
no. 13, pp. 10-14, February 2015.

[3] R. M. Sharma, “Tools and Techniques of Code Coverage Testing,”
International Journal of Computer Engineering and Technology
(IJCET), vol. 5, no. 9, pp. 165-171, 2014.

[4] P. Mahadik, D. Bhattacharyya and H.-J. Kim, “Techniques for
Automated Test Cases Generation: A Review,” International Journal of
Software Engineering and Its Applications, vol. 10, no. 12, pp. 13-20,
2016.

[5] A. M. Sinaga, P. A. Wibowo, A. Silalahi and N. Yolanda, “Performance
of Automation Testing Tools for Android Applications,” 2018 10th
International Conference on Information Technology and Electrical
Engineering (ICITEE), 2018, pp. 534-539.

[6] S. Pathy, S. Panda, S. Baboo, “A Review of Code Coverage Analysis,”
International Journal of Computer Computer Science & Engineering
Technology (IJCSET), vol. 6, no.10, pp. 580-587, 2015.

[71 Z. Q. Zhou, A. Sinaga, W. Susilo, L. Zhao, K. Y. Cai, “A cost-effective
software testing strategy employing online feedback information,”
Information Sciences, vol. 422, 2018, pp 318-335.

[8] A. M. Sinaga, A. S. Dharma, O. Hutajulu, A. Ginting, & G.
Simanjuntak, “Dynamic Partitioning and Additional Branch Coverage
for Test Case Selection,” Journal of Physics: Conference Series, vol.
1175, 2019, pp. 012098

[9] “Symbolic Path Finder” [Online]. Auvailable:
https://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc.
[Accessed: 26 February 2018].

[10] “Java Path Finder” [Online]. Available:
https://babelfish.arc.nasa.gov/trac/jpf. [Accessed: 26 February 2018]

[11] S. Kunze, “Automated Test Case Generation for Function Block
Diagrams Using Java Path Finder and Symbolic Execution,” Thesis for
the Degree of Master of Science in Computer Science with specialisation
in Software Engineering, Malardalen University, School of Innovation
Design and Engineering, Vasteras, Sweden.

[12] C. S. Pasareanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz and
N. Rungta, “Symbolic Path Finder: integrating symbolic execution with
model checking for Java bytecode analysis,” Autom. Softw. Eng., no. 20,
pp. 391-425, 2013.

[13] D.-P. Nguyen, C.-T. Luu, A.-H. Truong and N. Radics, “Verifying
implementation of UML sequence diagrams using Java Path Finder,”
Second International Conference on Knowledge and Systems
Engineering, pp. 194-200, 2010.

[14] C. S. Pasareanu and N. Rungta, “Symbolic Path Finder: Symbolic
Execution of Java Bytecode,” ACM, 2010.

[15] K. Ké&hkoénen, “Evaluation of Java Path Finder Symbolic Execution
Extension,” pp. 1 - 20, June 2007.

[16] “Software-artifact Infrastructure Repository” [Online]. Available:
http://sir.unl.edu. [Accessed: 9 January 2018]

[17] “GeeksforGeeks” [Online]. Available: https://www.geeksforgeeks.org/.
[Accessed: 01 March 2018]

[18] “muJava Home Page” [Online]. Available:
https://cs.gmu.edu/~offutt/mujava/. [Accessed: 02 July 2018]

[19] M. Umar, “An Evaluation Of Mutation Operators For Equivalent
Mutants,” Department of Computer Science, King’s College, London.,
September 2006.

[20] B. H. Smith and L. Williams, “On guiding the augmentation of an
automated test suite via mutation analysis,” Journal Empirical Software
Engineering, vol. 14 , no. 3, pp. 341 - 369, June 2009.

ISSN: 1942-9703 / CC BY-NC-ND @

