
Vol.16/No.1 (2024) INTERNETWORKING INDONESIA JOURNAL 23

 ISSN: 1942-9703 / CC BY-NC-ND

Abstract— Test suite plays an important role in software

testing. Good test cases may improve the quality of software by

detecting failures earlier. Automation test case generation can

help to generate good test cases is needed. Symbolic Path Finder

(SPF) is a model checker developed by the National Aeronautics

and Space Administration (NASA) as an extension of Java Path

Finder (JPF). SPF uses symbolic execution, model checking and

constraint solver to produce test cases. This study is intended to

perform SPF and to verify the effectiveness of the test case

produced by the SPF. Mutation testing, a fault-based testing

technique, is conducted to investigate the adequacy of produced

test cases. The programs under test in this study are Median,

Armstrong, Multiple, Nested If, and Simple Calculator. All those

programs are written in the Java programming language. The

test suite for each of the programs under test has been generated

by applying SPF. The mutation score obtained for produced test

suites of each program ae as follows: 74.82% for the Median

Program, 77.78% for the Armstrong Program, 31.20% for the

Multiple Program, 92.00% for the Nested If Program, and

55.82% for the Simple Calculator Program. These experimental

results indicate that the test suite generated by the SPF is unable

to detect all existing faults. From the observations, this problem

is because SPF only applies decision coverage in determining

path during the process of forming test cases. Potential

improvement may be obtained by applying other types of

coverage criteria.

Index Terms— Test case generation, Java Path Finder,

Symbolic Path Finder, Mutation testing

I. INTRODUCTION

OFTWARE testing is the process of identifying the

accuracy, completeness, and quality of the built software.

Software testing is part of software engineering that includes

validation of each stage of the Software Development Life

Cycle (SDLC) [1]. The purpose of software testing is to detect

failures [2][3]. Tests are performed using test suites which are

a set of test cases. Test cases consist of an assembly of

observed inputs and outputs that will then compare the actual

output with the expected output [4].

A test case can be generated manually or automatically.

Generating a test case manually depends on the ability of the

tester to locate a failure after the program is executed [4].

While generating a test case automatically uses a tool that can

generate a more effective test case and can cover the entire

program code [5], a test case is required to cover the entire

code of the program in order to optimize the failure detection.

The more program code covered, the more likely it is to find a

fault [6][7][8].

One of the tools used to generate test cases automatically is

the Symbolic Path Finder (SPF). SPF is an extension of the

Java PathFinder (JPF) for symbolic execution. JPF is a

checker model developed by the National Aeronautics and

Space Administration (NASA) [9][10]. JPF executes Java

programs and searches for all possible paths that can be

executed on programs as well as verifies their authenticity,

such as deadlocks and exceptions. SPF is a combination of

symbolic execution, model checking, and constraint solving to

generate test cases automatically. SPF uses an analysis engine

from JPF, which is a checking model to examine the internal

code structure of the program to find errors. After checking all

possible paths, the SPF uses a constraint solver to generate

input test cases according to the constraints of the path passed.

The resulting output contains information about the resulting

parameter input where each path on the program code has

been executed [11].

This research plays a role in experimentally investigating

the use of SPF in software testing. To analyze the

effectiveness of using SPF in generating test cases, mutation

testing is performed. Mutation testing modifies the original

program by inserting a fault into the program and then

performs a process of testing to evaluate the ability of the test

case and find that fault. The code of the program containing

the fault is called a mutant program. The results of the testing

process for the mutant program are called actual outputs,

whereas the results of testing of the original program are

called expected output.

This paper consists of six sections. Section 2 explaining the

studied methods, namely Java Path Finder and Symbolic Path

Finder. Section 3 explains the conducted experiment. Section

4 explains the results obtained from the experiment. Section 5

explains the discussion of the obtained results. Section 6

explains the conclusions and potential further research.

II. STUDIED AUTOMATION TESTING METHODS

A. Automation Testing

Automation testing is the process of writing and executing

test cases using software. Automation testing can be done

quickly and repeatedly. The software used to carry out

automation testing in this research is Symbolic Path Finder

(SPF) which is an extension of Java Path Finder (JPF).

Test Case Generation Using Java Path Finder

and Symbolic Path Finder

Arnaldo Marulitua Sinaga and Rosni Lumbantoruan

S

A. M. Sinaga is with Faculty of Vocational Studies at Institut Teknologi
Del (IT Del), Indonesia (e-mail: aldo@del.ac.id*).

R. Lumbantoruan is with Faculty of Informatics and Electric Engineering

at Institut Teknologi Del (IT Del), Indonesia (e-mail: rosni@del.ac.id).

24 INTERNETWORKING INDONESIA JOURNAL Sinaga and Lumbantoruan

B. Java Path Finder

The Java Path Finder (JPF) is a model checker developed

by the National Aeronautics and Space Administration

(NASA). JPF is an open-source research platform. In JPF, a

Java program is given to be executed, and then a JPF file (with

extension of .jpf) is generated to verify the program in order to

detect failure in the program. JPF explores all paths in the

program. When faced with the branch, the JPF checks if it has

been through the same path or not. If yes, then it will go back

to a previous point that it has never been through, called a

backtrack. JPF is a model checker that distinguishes itself

from testing in general [12]. The differences of JPF with

general testing methods can be seen in Fig. 1 [10].

(a) Testing Process

(b) Model Checking Process

Fig. 1. JPF testing methods (a) testing process, (b) model checking process

(Source:
https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_m
odel_checking)

According to Fig. 1, testing will execute a program based

on the given input in which testing only executes one path on

a program's control flow model at a time. This is called a

concrete execution. Model checking explores all possible

paths on the control flow models of a program in a backtrack

until no more errors are found or called symbolic executions.

It is performed to find more errors on the test program.

The input given to JPF is a class file (Java bytecode) of a

test program and a configuration file to determine the

execution mode that JPF performs to the program as well as

the properties of the artifact needing to be produced. To

generate the desired artifacts, JPF provides several usable

extensions. The commonly used extensions of JPF are as

follows [12]:

• Choice Generators are used to generate choices or

choices on each branch formed by a test program.

• Instruction Factories are a set of semantic instructions

consisting of sets of operations such as calling methods

or variable access processes performed on test

programs.

• Attribute Objects are metadata related to values and

concrete objects. It means that JPF provides a

mechanism to store operand values, local variable

values, and metadata of a test program. This extension

allows JPF to do a backtrack because when JPF

performs a backtrack, the condition or information of

the last attribute passed by JPF will be stored.

• Native Peers is an abstraction library that supports JPF

executing programs on JVM.

• Listeners is the execution monitoring that JPF uses as a

plugin for monitoring internal operations in JPF.

C. Symbolic Path Finder

Symbolic Path Finder (SPF) is an open-source automatic

test case generation tool [11][13]. SPF can handle input and

operations from Booleans, integers, reals and complex data

structures with a polymorphic class hierarchy [14]. SPF uses

the analysis engine from JPF to examine the internal structure

of program code to find errors. The output of the program

code represents the numerical constraints of the input

parameters in the program code. Then these constraints are

used to produce concrete test cases as input parameters of the

program code [11]. SPF not only uses symbolic execution

mode, but SPF also supports combined execution modes,

namely concrete execution and symbolic execution. The input

parameters used for concrete execution are input parameters

with concrete values that are given fixed values, for example

constant values, and the input parameters used for symbolic

execution are input parameters whose symbolic values

correspond to the conditions of the path traversed [14].

Symbolic execution is a program analysis technique where

input variables that have concrete values are replaced into

symbolic variables [12][15]. The principle is that when

determining a path that contains the symbolic value of all

executed paths, the paths that have been traversed will be

saved. In symbolic execution, Path Condition (PC) is known

as a constraint condition for input on a branch, so that the PC

is always updated according to the branch being traversed.

The path traversed during symbolic execution is represented in

the form of a symbolic execution tree [12]. An example of a

simple program to form a symbolic execution tree from a

program executed is using the symbolic execution technique

illustrated in Fig. 2.

https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking
https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking
https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking
https://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking

Vol.16/No.1 (2024) INTERNETWORKING INDONESIA JOURNAL 25

 ISSN: 1942-9703 / CC BY-NC-ND

(a) Code example for symbolic execution

(b) Symbolic execution of program

Fig. 2. Symbolic execution tree for example code (a) code example,

(b) symbolic execution of program (Source: Evaluation of Java
PathFinder Symbolic Execution Extension)

In Fig. 2(b) is a symbolic execution tree formed from the

program in part a. First, the int x and int y parameter values

are converted into symbolic values x to X and y to Y with the

PC value true. Then the x value is given to the temp variable

and the PC remains true. Then the branch is identified so that

two branches are formed which are the value of the path

condition and the negation of that path condition. On line 2,

the specified PC condition is (Y > 0) then the negative (Y <=

0). After the PC (Y> 0) is passed, the line 3 is run (X = X + Y)

and continues with (Y = temp) which means that Y becomes

X. On line 3 and 4 the PC remains (Y > 0). The value

generated at (X+Y < X) does not intersect, so the path is

categorized as an infeasible path and no test case is generated

on the path. After all path passes, the symbolic execution

backtracks until the negation of the path on line 2 is PC value

(Y <= 0). When executing this PC, line 3 is not executed so

that X remains X value. Then on line 4, Y becomes X and on

line 5, the same branch as the previous path is identified. The

first path of the branch is also called an infeasible path [15].

III. THE EXPERIMENTS

A. Program Under Test

The methodology in this study is an experimental method

that is conducted to investigate the SPF tool in producing a

test case. The study used five research objects written using

the Java programming language and integer parameter input,

namely Median Program, Armstrong Program, Multiple

Program, Nested If Program, and Simple Calculator Program.

The five programs were obtained from different sources where

Median program was downloaded from the Software-Artifact

Infrastructure Repository (SIR) [16], Armstrong program was

downloaded from GeeksforGeeks [17], and Multiple

programs, nested if program, and simple calculator program

were programs created by researchers for research purposes.

B. Experiments Analysis

 To be able to generate test cases, SPF requires a class file

(Java bytecode) and a configuration file with the extension

.jpf. This file contains options that are used to verify the

program and enabling it to generate test cases from the

program. Some commonly used options in a configuration file

are as follows:

• classpath is used as a path to the directory containing the

compilation files of the Java program.

• sourcepath is used as a path to the directory containing the

Java program being executed.

• target is used to indicate the package name and Java

program being executed.

• symbolic.method is used to show the parameters of a

method that is executed symbolically.

• symbolic.min_int and symbolic.max_int are used to

provide test case value limits.

• SymbolicListener is used to display information of the path

condition that is executed symbolically.

• SymbolicSequenceListener is used to display test cases.

• search.multiple_errors is used to prevent SPF from

hindering the execution of a Java program if it encounters

the first error.

The symbolic execution tree produced by SPF is used to

determine the number of test cases generated in a program.

Symbolic execution trees are formed based on the code

structure of the program being tested. In this research, the

symbolic execution tree is drawn manually for programs with

few lines of program code, contrasting with programs with

many lines of program code in which it is impossible to draw

the symbolic execution tree manually. As a result, verification

of the number of test cases produced in a program is carried

out by conducting trials using several limit values. Limit value

experiments were carried out using the symbolic.min_int and

symbolic.max_int options.

The symbolic.min_int and symbolic.max_int options are

used for programs with integer input parameters. These two

options are used to determine the limit value or range of

values for the candidates of test cases that will be generated.

The symbolic.min_int option is used to provide a minimum

value limit for the test case and symbolic.max_int is used to

26 INTERNETWORKING INDONESIA JOURNAL Sinaga and Lumbantoruan

provide a maximum value limit for the test case. These two

options are additional options provided by SPF. In the

experiments carried out, the symbolic.min_int and

symbolic.max_int options were given in each study object

configuration file to determine the number of test cases

produced. To determine the maximum and minimum limit

values, a series of experiments were carried out.

Several experiments carried out on the Median Program can

be seen in Table I. In the Median Program, experiments were

carried out on 18 candidates within the limit value range and

15 candidates were obtained, producing six test cases as in

Table I. Based on these experiments, the maximum number of

test cases in the Median Program is six. The limit value range

chosen in this experiment is a minimum value of -1 and a

maximum value of 1. Verification of this program can also be

done based on the program's symbolic execution tree.

TABLE I

LIMIT VALUE FOR MEDIAN PROGRAM

Min Value Max Value Number of TC

-50 50 6

-40 40 6

-30 30 6

-20 20 6

-10 10 6

-5 5 6

-1 0 5

-1 1 6

0 0 1

0 1 5

0 5 6

0 2 6

0 10 6

0 20 6

0 30 6

0 40 6

0 50 6

- - 6

The symbolic execution tree of the Median Program is

presented in Fig. 3. It can be seen that the paths of the Median

Program consist of six paths and all of these paths can be

traversed. These are called feasible paths. The six paths in the

Median Program are as follows:

- PC1: Y < Z ˄ X < Y

- PC2: Y < Z ˄ X >= Y ˄ X < Z

- PC3: Y < Z ˄ X >= Y ˄ X >= Z

- PC4: Y >= Z ˄

- PC5: Y >= Z ˄ X <= Y ˄ X > Z

- PC6: Y >= Z ˄ X <= Y ˄ X <= Z

The same analysis process is conducted to all programs

under the test. The Armstrong program is a program with

repetition code to ensure that the number of test cases is

dependent on the number of iterations carried out. In the

Armstrong Program, experiments were conducted on 13

candidate limit value ranges, and it was found that three

candidates produced invalid test cases. An invalid test case is a

test case consisting of a value exceeding the maximum limit of

the integer value type. This test case is inoperable because it

causes the program to error. Limit values that produced

invalid test cases were eliminated from the selected limit value

candidates because the test cases could not be used, 10 more

candidates to be selected. The range of limit values chosen for

use in experiments is a minimum value of 0 and a maximum

value of 1000. Verification of this program can also be done

based on the program's symbolic execution tree. The symbolic

execution tree of the Armstrong Program has also been

analysed.

Fig. 3. Symbolic Execution Tree of Median Program

The paths that can be identified for the Armstrong Program

with one iteration are three paths. The three paths are as

follows:

- PC1: A = 0

- PC2: A !=0 ˄ (A/10) = 0

- PC3: A !=0 ˄ (A/10) != 0

The Multiple Program consists of three methods that are

executed sequentially in the main driver program, namely the

checkMonth method to return the name of the month from the

input value, the checkEvenOdd method to check odd or even

numbers and the checkNumber method to check positive or

negative numbers. The number of test cases generated depends

on the last method executed in the program, namely the

checkNumber method, so the number of test cases for the

other two methods will be the same as the number of test cases

for the checkNumber method. Therefore, the number of test

cases for each method in this program is three. In the Multiple

Program, experiments were carried out on 28 candidate limit

value ranges, and it was found that 14 candidates produced

invalid test cases. Limit values that produced invalid test cases

were eliminated from the selected candidate limit values

because the test cases could not be used. so that the limit value

Vol.16/No.1 (2024) INTERNETWORKING INDONESIA JOURNAL 27

 ISSN: 1942-9703 / CC BY-NC-ND

candidates become 14 candidates. The range of limit values

selected to use is a minimum value of 0 and a maximum value

of 40. For Multiple Programs, verification of the number of

test cases can also be performed based on the symbolic

execution tree. The symbolic execution tree for this program is

described based on the method being executed.

Based on the experimental analysis for Nested If Program,

the number of test cases for this program was 41. Since this

program is a program that has many lines of program code, the

symbolic execution tree was not drawn manually. In the

Nested If Program, experiments were conducted on 27

candidate limit value ranges, and it was found that 15

candidates produced invalid test cases. Limit values that

produced invalid test cases were eliminated from the selected

candidate limit values because the test cases could not be used

for experiments, leaving 12 candidates. The range of limit

values selected for use in the experiment is a minimum value

of 0 and a maximum value of 11.

From the analysis carried out, the number of test cases

produced by SPF for the Simple Calculator Program was five.

In the Simple Calculator Program, experiments were carried

out on 17 candidate limit value ranges, and it was found that

seven candidates produced five test cases. Based on this

analysis, the maximum number of test cases in the Simple

Calculator Program was five. The range of limit values

selected in experiments is a minimum value of -1 and a

maximum value of 1.

C. Experiment Design

The experiment’s algorithm is described as follows:

a. The initial process carried out is to download and install

jpf-core and jpf-symbc with the aim of being able to run

the SPF tool used in this final assignment. The IDE used

to run SPF is NetBeans version 8.1 and uses Java version

"1.8.0_171".

b. The next stage is determining the object of study. The

selected study object is the program used during the

research on this final assignment. The object of study is

selected by reading the program code to find out the

internal structure of the program. The study objects used

in this research were five programs.

c. After selecting a study object, a mutant program is

generated for each study object. The mutant program was

generated using an open-source Java project called µJava

(muJava). muJava is a program that is utilized to

generate mutants for Java programs automatically by

altering operators in the program or mutation operators

[18].

d. Next, test cases are generated using SPF from each

original program of the study object. Verification of the

effectiveness of this test case is carried out by mutation

testing.

e. The test cases produced by SPF can be seen in the

NetBeans IDE output display. For research purposes,

where there is a testing process for mutant programs, the

test cases are stored in a directory to make it easier to

read the test cases.

f. Next, the original program and mutant program for each

study object read the test cases stored in the storage

directory.

g. After successfully reading the stored test case, the test

case is executed on the original program and the mutant

program. In the original program, to be able to execute

the test case, modification on the main driver of the

original program is required. The test cases are later

executed on the mutant program in the same way as the

test cases were executed on the original program. The

execution results of the original program are recorded as

expected output, and the execution results of the mutant

program are recorded as actual output.

h. The next stage is to compare the output between the

original program (expected output) and the mutant

program (actual output). The output comparison is done

automatically. The output of the original program and the

output of the mutant program are stored in the form of a

.txt file. Then, a comparison is carried out by checking

the similarities of the contents of the output files. If the

output between the original program and the mutant

program is different, the test case is effective because it

can detect faults and is classified as a killed mutant. If

the outputs match, then it is classified as a live mutant.

The aim of this stage is to calculate the mutation score

for each study object. Mutation score determines the

percentage of test case effectiveness produced by SPF in

the program.

i. After obtaining the mutation score for each study object,

conclusions stating the effectiveness of the test case are

drawn.

IV. EXPERIMENTAL RESULT

Experiments were carried out on five study objects. Then

test cases were generated for each study object where the

effectiveness of the resulting test cases was checked. The

effectiveness of test cases was checked by applying mutation

testing. The number of mutants produced for each study object

varied. The number of test cases, number of mutants, number

of killed mutants and live mutants for each study object are

recorded in Table II.
TABLE II

MUTANTS FOR PROGRAM UNDER TEST

Program

No of TC No of

Mutant

No of

killed

mutant

No of live

mutant

Median 6 147 110 37
Armstrong 6 135 105 30
Multiple 3 125 39 86
Nested If 41 200 184 16
Simple
Calculator

5 206 115 91

After mutation testing is conducted to each of the programs

under test, the mutation score was calculated by using the

following formula [19][20]:

28 INTERNETWORKING INDONESIA JOURNAL Sinaga and Lumbantoruan

The mutation score resulted from the mutation testing for each

of the programs under test is presented in Table III.

TABLE III

MUTATION SCORE RESULTS

Program
Mutation Score (%)

Median 74.82
Armstrong 77.78
Multiple 31.20
Nested If 92.00
Simple

Calculator
55.82

In Table III, the mutation score value for each program is

recorded. The Median Program mutation score reached

74.82%, the Armstrong Program 77.78%, the Multiple

Program 31.20%, the Nested If Program 92.00% and the

Simple Calculator Program 55.82%. Of the four programs

above, the highest mutation score is obtained by the Nested If

Program whereas the lowest is produced by the Multiple

Program.

V. DISCUSSION

Limit value is an additional option provided and is a range

of values that will be used for the values of candidate test

cases generated by SPF. Without using limit values, the values

of the candidate test cases used are the minimum and

maximum values of the integer type. In this experiment, a

weakness in SPF was identified in generating test cases,

proven by the existence of invalid test cases. An invalid test

case is a test case that has a value exceeding the maximum

limit of the integer type, meaning that the test case is

inoperable. Invalid test cases are generated because the

minimum limit value given is negative, such as the

experiments carried out in the Armstrong, Multiple, and

Nested If programs. The limit value chosen is the value that

produces a valid test case. This causes not all program paths to

be traversed due to the lack of test cases used to meet all paths

in the program. The resulting test case value will depend on

the limit value used. Therefore, selecting a different limit

value will give different results.

From Table III, it was recorded that there was no testing on

program under test that obtained a mutation score reaching

100%. From the results of the analysis carried out, the test

cases produced by SPF meet the Decision Coverage (DC)

criteria. A test case that meets the decision coverage condition

is a test case that focuses on the condition of each branch in

the program code being tested, which means that each branch

must be executed at least once. Test cases that meet decision

coverage are test cases that fulfill the decision on the branch

and not on each clause, which forms the branch. In this case,

decision coverage still has limitations, where there are still

other coverage criteria that should be investigated, such as the

Decision Condition Coverage (DCC) criteria. Examination

using the Decision Condition Coverage criterion is a criterion

where the test case not only meets the decision conditions of a

branch, but also fulfills every clause that forms the branch.

The experimental results indicate that the test suite produced

by SPF was unsuccessful in detecting all existing faults

because SPF only applied decision coverage in determining

the path during the test case formation process.

To produce test cases, SPF creates a symbolic execution

tree to determine the number of paths formed by a program. In

this research, the symbolic execution tree is drawn manually

for programs with few lines of program code such as the

Median Program, Armstrong Program, and Multiple Program.

Meanwhile, for programs with many lines of program code,

such as the Nested If Program and the Simple Calculator

Program. Verification using a manually drawn symbolic

execution tree allows room for human error when drawing it,

creating a different obtained path with the path generated by

SPF. This can result in an invalid test case verification. In this

research, verification of the number of test cases for a program

was also obtained by carrying out a series of experiments on

several ranges of limit values. The use of different minimum-

maximum value ranges will affect the number of test cases

and test case values produced in a program. Verification when

test cases have reached the maximum number is carried out if

the number of test cases produced remains the same despite

the increase in the range values given. Human error may occur

in a test case variation, where the range of minimum-

maximum values given is incorrect, causing the results

obtained to change and be invalid.

VI. CONCLUSION

SPF forms a symbolic execution tree to generate test

cases. The resulting test cases are test cases that meet the

conditions at each branch of the symbolic execution tree. This

means that the test cases produced by SPF are test cases that

meet the decision coverage where each branch must be

executed at least once. The weakness of the SPF tool that was

discovered during experiments in this final project was that

invalid test case values were obtained, namely values

exceeding the maximum integer limit for several programs

which used a negative minimum value limit for their candidate

test cases. To verify the test cases produced by SPF, mutation

testing is carried out. Based on the experiments carried out, it

was found that the mutation score value for the study object

under study did not reach 100%. This means that the test cases

produced by SPF for the study object are insufficient because

the test cases produced by SPF are test cases that meet the

decision coverage criteria which still have limitations

compared to other coverage criteria.

In this research, it was found that not all faults in mutant

programs could be detected using test cases generated by SPF.

Therefore, it is necessary to carry out more in-depth research

on the test cases produced by SPF using examination of path

coverage criteria. It is necessary to verify the path with a

symbolic execution tree produced by a tool (automation) to

Vol.16/No.1 (2024) INTERNETWORKING INDONESIA JOURNAL 29

 ISSN: 1942-9703 / CC BY-NC-ND

reduce the possibility of manual process errors. Determining

the limit value for generating test cases needs to be

investigated further. It is important to find a way to obtain the

most optimal limit value.

ACKNOWLEDGMENT

This research is fully supported by the Institut Teknologi Del,

Indonesia in providing the necessary facilities.

REFERENCES

[1] T. Parveen, S. Tilley and G. Gonzalez, “A Case Study in Test
Management,” ACMSE 2007, pp. 82-87, 2007.

[2] I. Hooda and R. S. Chhillar, “Software Test Process, Testing Types and

Techniques,” International Journal of Computer Applications, vol. 111,
no. 13, pp. 10-14, February 2015.

[3] R. M. Sharma, “Tools and Techniques of Code Coverage Testing,”

International Journal of Computer Engineering and Technology

(IJCET), vol. 5, no. 9, pp. 165-171, 2014.

[4] P. Mahadik, D. Bhattacharyya and H.-J. Kim, “Techniques for

Automated Test Cases Generation: A Review,” International Journal of
Software Engineering and Its Applications, vol. 10, no. 12, pp. 13-20,

2016.

[5] A. M. Sinaga, P. A. Wibowo, A. Silalahi and N. Yolanda, “Performance
of Automation Testing Tools for Android Applications,” 2018 10th

International Conference on Information Technology and Electrical

Engineering (ICITEE), 2018, pp. 534-539.
[6] S. Pathy, S. Panda, S. Baboo, “A Review of Code Coverage Analysis,”

International Journal of Computer Computer Science & Engineering

Technology (IJCSET), vol. 6, no.10, pp. 580-587, 2015.
[7] Z. Q. Zhou, A. Sinaga, W. Susilo, L. Zhao, K. Y. Cai, “A cost-effective

software testing strategy employing online feedback information,”

Information Sciences, vol. 422, 2018, pp 318-335.
[8] A. M. Sinaga, A. S. Dharma, O. Hutajulu, A. Ginting, & G.

Simanjuntak, “Dynamic Partitioning and Additional Branch Coverage

for Test Case Selection,” Journal of Physics: Conference Series, vol.

1175, 2019, pp. 012098

[9] “Symbolic Path Finder” [Online]. Available:

https://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc.
[Accessed: 26 February 2018].

[10] “Java Path Finder” [Online]. Available:

https://babelfish.arc.nasa.gov/trac/jpf. [Accessed: 26 February 2018]
[11] S. Kunze, “Automated Test Case Generation for Function Block

Diagrams Using Java Path Finder and Symbolic Execution,” Thesis for

the Degree of Master of Science in Computer Science with specialisation
in Software Engineering, Malardalen University, School of Innovation

Design and Engineering, Vasteras, Sweden.

[12] C. S. Pasareanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz and
N. Rungta, “Symbolic Path Finder: integrating symbolic execution with

model checking for Java bytecode analysis,” Autom. Softw. Eng., no. 20,

pp. 391-425, 2013.
[13] D.-P. Nguyen, C.-T. Luu, A.-H. Truong and N. Radics, “Verifying

implementation of UML sequence diagrams using Java Path Finder,”

Second International Conference on Knowledge and Systems

Engineering, pp. 194-200, 2010.

[14] C. S. Pasareanu and N. Rungta, “Symbolic Path Finder: Symbolic

Execution of Java Bytecode,” ACM, 2010.
[15] K. Kähkönen, “Evaluation of Java Path Finder Symbolic Execution

Extension,” pp. 1 - 20, June 2007.

[16] “Software-artifact Infrastructure Repository” [Online]. Available:
http://sir.unl.edu. [Accessed: 9 January 2018]

[17] “GeeksforGeeks” [Online]. Available: https://www.geeksforgeeks.org/.

[Accessed: 01 March 2018]
[18] “muJava Home Page” [Online]. Available:

https://cs.gmu.edu/~offutt/mujava/. [Accessed: 02 July 2018]

[19] M. Umar, “An Evaluation Of Mutation Operators For Equivalent
Mutants,” Department of Computer Science, King’s College, London.,

September 2006.
[20] B. H. Smith and L. Williams, “On guiding the augmentation of an

automated test suite via mutation analysis,” Journal Empirical Software

Engineering, vol. 14 , no. 3, pp. 341 - 369, June 2009.

