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Abstract—A classical requirement to reduce network latency 

drives paradigm shifts from cloud computing together with 
content delivery network to fog computing, and edge computing. 
These paradigms practically co-exist in a multi-tier structure. 
This paper presents novel approaches for accelerating the cloud-
service response times of a cloud-CDN-fog-edge layered structure 
by means of hierarchical cloud caches and fine-grained 
replication. We also propose a unified cost-performance model 
that enables both temporal and monetary cost evaluation. We 
leverage the model to quantify the temporal effectiveness of the 
approaches in comparison with a classical LRU one. Results 
show that, when deploying in conjunction with the fine-grained 
replication, cloud caches significantly improve the overall 
response times up to 23.85%. A cloud layer is found to contribute 
most to the response times. Regardless of selected approaches, 
another finding is that the response times are the quadratical 
functions of the number of edge devices. 
 

Index Terms—cloud optimization, fog node, edge device, 
partial replication, browser cache 

I. INTRODUCTION 
N the simplest use case of cloud computing services, edge 
devices including smart/IoT end devices are programmed to 

access origin servers on clouds. Since the cloud services are 
highly network dependent, a rudimentary problem cloud service 
consumers encounter is delayed response times. Content delivery 
network (CDN) [1], fog computing [2], and edge computing [3] 
are actively researched to mitigate user perceived latencies by 
placing data stores and computation as near as the consumers. 
Consequently, production use cases seriously employ the CDN, 
fog computing, and edge computing to minimize cloud-service 
response costs from end user perspective. The response costs are 
generic and can be specialized to either cloud-service response 
times or cloud-data-out monetary charges. The focus of this paper 
is the former cost form.  

The cloud-service response times can be significantly 
improved by means of caching. Nowadays, the edge devices 
ubiquitously come with HTTP client capabilities, which include 
browser caches [4]. The notion of caches also recently appear in 
fog nodes [5]. All caching mechanisms of edge devices, fog 
nodes, and CDNs are however so classical that only an object hit 
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rate (OHR) is an optimization key. Our experience [6] suggests 
that the best OHRs need not lead to the lowest costs. In other 
words, we found in [6] that the classical caches failed to 
optimally address the fundamental problems of cloud service 
accesses: the expensive and slow downloading of big objects 
such as video streams, disk images, electronic documents, high-
resolution multimedia contents, and so on. Alternative to the 
classical caches is cloud cache [6], which is specifically 
optimized for both temporal and monetary cost saving.  

The contributions of this paper are twofold. The paper 
firstly proposes a simple but sophisticated method to improve 
cloud-service response times in cloud-CDN-fog-edge layered 
environments by using a hierarchical cloud-cache architecture 
equipped with fine-grained replication. The architecture is 
subsequently evaluated by leveraging our novel unified-cost-
performance model in comparison with the classical caches.  

II. RELATED WORK 

A. Content Delivery Network 
CDNs [1], [7] improve web scalability via the network of 

surrogate servers (aka edge servers and cache servers) that 
offloads an origin server by delivering objects on its behalf. The 
surrogate servers are reverse caching proxies strategically placed 
across a CDN provider’s distributed data centers, Internet 
exchange points (IXPs), and points of presence (PoPs) to improve 
user-perceived round-trip times. Similar to the traditional CDNs, 
cloud CDNs [8] have surrogate servers located across globally-
distributed cloud-data centers and PoPs. When an HTTP request 
to a target cloud server from a client is sent to a CDN due to both 
the client’s and a client-side proxy’s cache misses, the CDN’s 
request routing infrastructure (RRI) maps the request to the 
topologically closest surrogate server [9]. If a cache miss occurs 
and the CDN is noncooperative of its kind [10], such a surrogate 
will directly contact the target cloud server. Otherwise the 
cooperative surrogate will use ICP protocol [11], [12] to contact 
its sibling surrogate [13]. If all siblings in the same deployment 
[14] (aka edge cluster [15]) yield cache misses, the surrogate will 
forward the request to the cloud server [7], [13]. Nevertheless, 
both traditional and cloud CDNs focused on OHR by 
employing LRU variants [9], [16], [17]. 
 Among CDN-performance modeling efforts, [18] analyzed 
mesh cache-server performance through both cache 
replacement and traffic models. A CDN utility in conjunction 
with surrogate server utilization were used in [19] as a CDN 
performance metric. [20] utilized a deep recurrent neural 
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network to find out a reach rate as the key performance metric 
of CDN. 

B. Fog Computing 
Officially defined by [2], fog computing is a layered model 

enabling low-latency accesses to cloud computing resources 
by decentralizing storage, data processing, and computing 
service into fog nodes. The fog nodes (aka cloudlets) reside 
between smart/IoT edge devices and centralized cloud 
services. The fog nodes are either physical or virtual gateways 
or servers and either isolated or federated that provide data 
management and communication services. Like CDN, fog 
computing is not a mandatory layer to support the interaction 
between the cloud services and the edge devices.  

Caching was increasingly exploited in fog [5], [21], [22]. 
They however aimed for OHR through either a proprietary 
cache eviction policy or a new peer-to-peer cache selection 
scheme.  

As for fog performance modeling, [23] modeled average 
round-trip time and energy consumption. A service latency 
model in [24] was based on transmission and processing 
latencies to contrast fog computing and cloud computing 
suitability in IoT context. 

C. Edge Computing 
Edge computing is a peripheral layer encompassing 

network-accessible edge devices to provide local computing to 
individual users [2]. Edge devices such as smart phones, smart 
watches, smart tablets, and various IoT end devices are 
capable of HTTP-based accesses to distant cloud services via 
web browser engines. The web browsers, operating in 
nonprivate mode, conventionally utilize two main types of 
small memory caches and disk caches [4]. The memory caches 
ignore almost all HTTP cache headers and stores objects only 
during session lifetimes. On the other hand, the disk caches 
completely obey HTTP cache protocol and are thus so 
persistent that allow object reuses across multiple sessions.  

The web browsers’ disk caches promote OHRs by means of 
either LRU or a proprietary algorithm based on object reuse 
and age [25], [26].  

D. Cloud Cache 
Cloud cache [27] is a client-side HTTP cache establishing 

on a fact that small objects become no longer costly to 
download in cloud environments wherein big object 
population keeps increasing. Therefore, the cloud cache is 
designed to optimize cost saving ratio (CSR) rather than OHR 
by favoring big objects to persist in the cache. Cloud caches 
employ either of the following two cache replacement 
policies. CLOUD [6] is a profit-function based policy 
supporting federated clouds with nonuniform data-out 
monetary charges. The other policy, SMFD [28], [29], is a-
priori request-distance based policy that universally attains 
near-optimal CSRs and OHRs at the same time. The cloud 
caches’ admission controls usually follow a compulsorily-
caching admission scheme realized by CLOUD or SMFD. A 
selectively-caching admission scheme is also allowed via 
SMFD∗, the variant of SMFD allowing optional eviction. The 

cloud caches’ coherence simply relies on a well-established 
HTTP cache coherence protocol [30]. Similar to hierarchical 
web caches [31], cloud caches can be layered to match the 
hierarchical nature of the Internet consisting of ISP-level and 
enterprise-level shared cloud caches as well as web browser-
level cloud caches [6]. 

E. Web Cache Architecture Modeling 
In [32], [33], not only the network but also requested 

document models of hierarchical and distributed web caches 
were presented. [34] modeled a hierarchical web-cache net-
work by using probabilistic flowcharts. All of these models 
were however aware of neither local web-browser caches nor 
application replication. 

III. ACCELERATED ARCHITECTURE 
A production use case wherein edge devices access remote 

cloud services with the intermediate assistance of both CDN 
and fog node in a hierarchical tree topology is illustrated in 
Fig 1. This cloud-CDN-fog-edge architecture allows us to 
naturally overlay a cloud cache hierarchy to improve the cloud 
service’s response times. The architecture is described now.  

When an edge device dispatches a data object request 
(realized by an HTTP GET method, etc.) to a cloud origin 
server where target data is provided, the request is first 
checked in the edge device’s web-browser cloud cache. If a 
cache miss occurs, the request will be redirected to a nearby 
fog node’s cloud cache. If the fog-node cloud cache results in 
a cache miss, the request will be re-routed to a cloud-cache 
based CDN. Any cache miss at the CDN will result in the 
request routed to the cloud origin server. A reply from the 
origin server will be returned to the edge device via the CDN 
and the fog node, respectively, and stored in the cloud caches 
of the CDN, the fog node, and the edge devices.  

On the other hand, when an edge device dispatches an 
application object request (in the form of an HTTP POST 
method, etc.) to the cloud service, the request will be 

 
 
Fig. 1.  Cloud cache hierarchy along cloud-CDN-fog-edge architecture. 
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processed within the edge device itself if fine-grained 
replication is locally deployed and the requested service’s 
object replica is locally available. Basically, the fine-grained 
replication (FGR) incrementally and partially replicate a Java 
server application (implementing the cloud service) for local 
execution on Java-based devices (e.g., Android). To achieve 
the FGR, SOOM middleware [35] that enables partial and 
incremental replication and consistency maintenance is 
required. In Fig 1, fine-grained replicas are present in all edge 
devices. If the request cannot be served by the replicas, the 
request will be routed to a fog node. If the fog node offers no 
cloud service function that serves the service request, the 
request will be further routed to the cloud service bypassing 
CDN. Any response from the cloud service will be returned 
through the CDN then the fog node to the edge device.  

IV. UNIFIED COST PERFORMANCE MODEL 
This section analyzes the generic-cost-performance model 

of the accelerated architecture in Fig. 1. The resulting model is 
applicable to both temporal and monetary costs incurred by 
any number of edge devices making requests to a cloud 
service through a single isolated fog node and any number of 
CDN surrogates. According to the architecture, the expected 
cloud-service response-cost (𝔼𝔼c) of a data- and/or application-
request aggregation (σ) generated by edge devices within a 
time unit is defined as 

𝔼𝔼c = CePeλe 

+ Cef (1 − Pe)λef 

+ Pf (Cf λef + Cfeλfe) 

+ Cfs(1 − Pf )λfs                          (1) 

+ Ps (Csλfs + (Csf + Cfe)λse)
 

 

+ Csc (1 − Ps)λsc 

+ Pc(Ccλsc + (Ccs + Csf + Cfe )λce ) 

where Pe  is a probability σ will be purely served within the 
edge devices, Ce is a cost per request the edge devices locally 
respond σ, λe is a rate σ is generated at the edge devices, Cef 

is a transfer cost per request from the edge layer to an isolated 
fog node, λef is the rate of σ subset falling back from the edge 
layer to the fog node because requested objects are 
unavailable in the edge devices (i.e., cache misses), Pf is a 
probability the σ subset (i.e., fallback requests) will be 
responded at the fog node, Cf is a response cost per 
request at the fog node, Cfe is a cost a response is sent from 
or forwarded by the fog node to the edge, λfe  is the rate of 
responses to the edge by the fog node, Cfs is a transfer cost 
per request from the fog node to a CDN surrogate, λfs is 
the rate of requests falling back from the fog node to the 
CDN surrogate, Ps  is a probability the fallback requests will 
be responded at the CDN, Cs  is a response cost per request 
at the CDN, Csf  is a cost a response is sent from or 
forwarded by the CDN to the fog node and the edge 
respectively, λse is the rate of responses by the CDN toward 
the edge, Csc  is a transfer cost per request from the CDN 

to a cloud origin server, λsc is the rate of requests falling back 
from the CDN to the origin server, Pc  is a probability the 
fallback requests will be eventually processed by the origin 
server and equals 1 if the server is available when the requests 
arrive, Cc is a cost the origin server responds each request, Ccs 

is a cost a response is sent back from the origin server to the 
edge via the CDN and the fog, and λce is the rate of responses 
by the origin server. 

Remark that processing costs to evaluate cache misses at 
every cache level, the costs of both response forwarding 
decision and missing object caching at the CDN and the fog 
node, and the costs of both response displaying and 
m i s s i n g  object caching at the edge are neither significant 
nor in-line in cloud-service response times, thus omitted. 
Moreover, since the response cost is to be measured within a 
single time unit, an assumption that cached objects do not 
expire meanwhile applies. Such an assumption is supported by 
[36] : within much longer time frame 3 weeks, 95% of 
requests originating at mobile devices can be served by an 
unconditional HTTP GET method. In other words, objects 
requested by the edge mostly last long. 

Since the edge devices can make requests to both data and 
application objects (hopefully served by cloud caches and fine- 
grained replicas, respectively) to the cloud service, the cost 
components of (1) are derived one by one. 

An edge response cost incurred within the time unit equals 

𝐶𝐶𝑒𝑒𝑃𝑃𝑒𝑒𝜆𝜆𝑒𝑒 = ∑ max (𝐶𝐶𝑒𝑒𝑖𝑖
(𝑑𝑑)𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑)𝜆𝜆𝑒𝑒𝑖𝑖
(𝑑𝑑),𝐶𝐶𝑒𝑒𝑖𝑖

(𝑎𝑎)𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎)𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎))𝑀𝑀
𝑖𝑖=1                  (2) 

where notations (d) and (a) distinguish data object requests and 
application object requests and the total number of edge 
devices is M. 𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑) and 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎) are a data OHR and an 

application OHR, respectively, at ei. As both data and 
application object requests are executed concurrently by 
multiprocessing computer devices, the max function is 
utilized.  

An edge-to-fog request transmission cost is 

𝐶𝐶𝑒𝑒𝑒𝑒(1 - 𝑃𝑃𝑒𝑒)𝜆𝜆𝑒𝑒𝑒𝑒 = ∑ �𝐶𝐶𝑒𝑒𝑖𝑖𝑓𝑓
(𝑑𝑑)(1− 𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑))𝜆𝜆𝑒𝑒𝑖𝑖
(𝑑𝑑) + 𝐶𝐶𝑒𝑒𝑖𝑖𝑓𝑓

(𝑎𝑎)(1− 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎))𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎)�.𝑀𝑀
𝑖𝑖=1       (3) 

Note that costs arising at the edge devices and between the 
fog node and the edge devices are serial in the default model 
(i.e., an overall cost paid by all M) to project the entire-system 
response cost of M devices. These serial costs can 
alternatively be summarized into an average, min, or max 
value to reflect a response cost an individual edge device 
undergoes. 

At the isolated fog node, a fog response cost is 

𝑃𝑃𝑓𝑓(𝐶𝐶𝑓𝑓𝜆𝜆𝑒𝑒𝑒𝑒 + 𝐶𝐶𝑓𝑓𝑓𝑓𝜆𝜆𝑓𝑓𝑓𝑓) = max�
𝐶𝐶𝑓𝑓

(𝑑𝑑)𝑃𝑃𝑓𝑓
(𝑑𝑑) ∑ �1 − 𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑)�𝜆𝜆𝑒𝑒𝑖𝑖
(𝑑𝑑),𝑀𝑀

𝑖𝑖=1  

𝐶𝐶𝑓𝑓
(𝑎𝑎)𝑃𝑃𝑓𝑓

(𝑎𝑎)∑ �1− 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎)�𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎)𝑀𝑀
𝑖𝑖=1

� 

+ 𝑃𝑃𝑓𝑓
(𝑑𝑑) ∑ 𝐶𝐶𝑓𝑓𝑓𝑓𝑖𝑖

(𝑑𝑑)(1 − 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑑𝑑))𝜆𝜆𝑒𝑒𝑖𝑖

(𝑑𝑑))𝑀𝑀
𝑖𝑖=1              (4) 

+ 𝑃𝑃𝑓𝑓
(𝑎𝑎)∑ 𝐶𝐶𝑓𝑓𝑓𝑓𝑖𝑖

(𝑎𝑎)(1− 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎))𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎))𝑀𝑀
𝑖𝑖=1       
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where 𝑃𝑃𝑓𝑓
(𝑑𝑑)

 is a data OHR and 𝑃𝑃𝑓𝑓
(𝑎𝑎)

 is a probability to find the 
requested functional objects of the cloud service running 
within the fog node. 

A fog-to-CDN request-transfer cost is 

𝐶𝐶𝑓𝑓𝑓𝑓(1 - 𝑃𝑃𝑓𝑓)𝜆𝜆𝑓𝑓𝑓𝑓 = 𝐶𝐶𝑓𝑓𝑓𝑓
(𝑑𝑑)(1− 𝑃𝑃𝑓𝑓

(𝑑𝑑))∑ �1 − 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑑𝑑)�𝜆𝜆𝑒𝑒𝑖𝑖

(𝑑𝑑)𝑀𝑀
𝑖𝑖=1  

+𝐶𝐶𝑓𝑓𝑓𝑓
(𝑎𝑎)(1− 𝑃𝑃𝑓𝑓

(𝑎𝑎))∑ �1 − 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎)�𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎).𝑀𝑀
𝑖𝑖=1               (5) 

Let N be the number of cooperative surrogate servers, a 
CDN response cost is 

𝑃𝑃𝑠𝑠(𝐶𝐶𝑠𝑠𝜆𝜆𝑓𝑓𝑓𝑓 + (𝐶𝐶𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑓𝑓𝑓𝑓)𝜆𝜆𝑠𝑠𝑠𝑠) = 

 ∑ 𝑃𝑃𝑠𝑠𝑗𝑗
(𝑑𝑑)𝐶𝐶𝑠𝑠𝑗𝑗

(𝑑𝑑)�1− 𝑃𝑃𝑓𝑓
(𝑑𝑑)�∑ �1 − 𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑)�𝜆𝜆𝑒𝑒𝑖𝑖
(𝑑𝑑)𝑀𝑀

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=1       

+𝐶𝐶𝑠𝑠𝑠𝑠
(𝑑𝑑) ∑ 𝑃𝑃𝑠𝑠𝑗𝑗

(𝑑𝑑)�1− 𝑃𝑃𝑓𝑓
(𝑑𝑑)�∑ �1− 𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑)�𝜆𝜆𝑒𝑒𝑖𝑖
(𝑑𝑑)𝑀𝑀

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=1   (6)     

+∑ 𝑃𝑃𝑠𝑠𝑗𝑗
(𝑑𝑑)�1− 𝑃𝑃𝑓𝑓

(𝑑𝑑)�∑ 𝐶𝐶𝑓𝑓𝑓𝑓𝑖𝑖
(𝑑𝑑)�1− 𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑)�𝜆𝜆𝑒𝑒𝑖𝑖
(𝑑𝑑)𝑀𝑀

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=1         

where ∑ 𝑃𝑃𝑠𝑠𝑗𝑗
(𝑑𝑑)𝑁𝑁

𝑗𝑗=1  is an overall data OHR at the CDN. If the 
surrogate servers are noncooperative, N is simply set to 1 in 
(6)-(8). Note that the CDN does not process application object 
requests. 

A CDN-to-cloud request-transfer cost is 

𝐶𝐶𝑠𝑠𝑠𝑠(1 - 𝑃𝑃𝑠𝑠)𝜆𝜆𝑠𝑠𝑠𝑠 = 𝐶𝐶𝑠𝑠𝑠𝑠
(𝑑𝑑)(1− ∑ 𝑃𝑃𝑠𝑠𝑗𝑗

(𝑑𝑑)𝑁𝑁
𝑗𝑗=1 )(1− 𝑃𝑃𝑓𝑓

(𝑑𝑑))∑ �1 − 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑑𝑑)�𝜆𝜆𝑒𝑒𝑖𝑖

(𝑑𝑑)𝑀𝑀
𝑖𝑖=1  

+𝐶𝐶𝑠𝑠𝑠𝑠
(𝑎𝑎)(1− 𝑃𝑃𝑓𝑓

(𝑎𝑎))∑ �1 − 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎)�𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎).𝑀𝑀
𝑖𝑖=1                  (7) 

Lastly, let Pc be 1 and the origin server responds or 
acknowledges every request. A cloud response cost, including 
the cost of transmitting responses back to the edge devices, is 

𝑃𝑃𝑐𝑐(𝐶𝐶𝑐𝑐𝜆𝜆𝑠𝑠𝑠𝑠 + (𝐶𝐶𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑓𝑓𝑓𝑓)𝜆𝜆𝑐𝑐𝑐𝑐) = 

max�
𝐶𝐶𝑐𝑐

(𝑑𝑑)(1 −∑ 𝑃𝑃𝑠𝑠𝑗𝑗
(𝑑𝑑)𝑁𝑁

𝑗𝑗=1 )(1− 𝑃𝑃𝑓𝑓
(𝑑𝑑))∑ �1− 𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑)�𝜆𝜆𝑒𝑒𝑖𝑖
(𝑑𝑑),𝑀𝑀

𝑖𝑖=1  

𝐶𝐶𝑐𝑐
(𝑎𝑎)(1− 𝑃𝑃𝑓𝑓

(𝑎𝑎))∑ �1 − 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎)�𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎)𝑀𝑀
𝑖𝑖=1

�     

+𝐶𝐶𝑐𝑐𝑐𝑐
(𝑑𝑑) + 𝐶𝐶𝑠𝑠𝑠𝑠

(𝑑𝑑) +∑ 𝐶𝐶𝑓𝑓𝑓𝑓𝑖𝑖
(𝑑𝑑)(1 −∑ 𝑃𝑃𝑠𝑠𝑗𝑗

(𝑑𝑑)𝑁𝑁
𝑗𝑗=1 )�1− 𝑃𝑃𝑓𝑓

(𝑑𝑑)�∑ �1 − 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑑𝑑)�𝜆𝜆𝑒𝑒𝑖𝑖

(𝑑𝑑)𝑀𝑀
𝑖𝑖=1

𝑀𝑀
𝑖𝑖=1   

+𝐶𝐶𝑐𝑐𝑐𝑐
(𝑎𝑎) + 𝐶𝐶𝑠𝑠𝑠𝑠

(𝑎𝑎) +∑ 𝐶𝐶𝑓𝑓𝑓𝑓𝑖𝑖
(𝑎𝑎)�1− 𝑃𝑃𝑓𝑓

(𝑎𝑎)�∑ �1 − 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎)�𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎)𝑀𝑀
𝑖𝑖=1

𝑀𝑀
𝑖𝑖=1  (8) 

V. EVALUATION 
We evaluated our architecture acceleration by enlisting the 

cost performance model based on the scenario in Fig 1. 

A. Configuration 
We simulated the architecture that utilized three 

acceleration strategies one by one to speed up cloud-service 
response times as follows. 

• LRU cache : The CDN, fog, and edge layers totally used 
LRU caches. 

• Cloud cache : The CDN, fog, and edge layers uniformly 
employed cloud caches. 

• Cloud cache with FGR : The CDN, fog, and edge layers were 
equipped with cloud caches, and the edge layer additionally 

employed FGR. 
The simulation relied on model parameter values in Table I. 

The values were estimated by using various practical tools and 
previous empirical results [34], [35], [37], [38]. We measured 
the average 𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑)
 value of each ei by using a web browser’s 

LRU-OHR extension. M was limited to 20 to prevent 
overloading the only fog node and end-to-end network-
bandwidth saturation. 𝐶𝐶𝑒𝑒𝑖𝑖

(𝑑𝑑) and 𝜆𝜆𝑒𝑒𝑖𝑖
(𝑑𝑑) values for every ei were 

captured by using [38] when users loaded web pages causing 
one or more requests for each web page's embedded object(s). 
The unit of λ is requests per sec. Experience from [35] 
suggested 𝐶𝐶𝑒𝑒𝑖𝑖

(𝑎𝑎), 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎), and 𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎) values for a Java-enterprise 
cloud-server application (implemented with JBoss Enterprise 
Application Platform, for example) running on an off-premise 
private-cloud server. The application consisted of both 
replicable and database-accessing nonreplicable portions. A 
𝐶𝐶𝑒𝑒𝑖𝑖

(𝑎𝑎) value was slightly larger than a 𝐶𝐶𝑒𝑒𝑖𝑖
(𝑑𝑑) value as invoking 

the application caused the loading of several dependent 
modules. A 𝑃𝑃𝑒𝑒𝑖𝑖

(𝑎𝑎) range was higher but narrower than that of 
𝑃𝑃𝑒𝑒𝑖𝑖

(𝑑𝑑) as, based on our experience, most users routinely 
accessed a small and repeated set of server application 
functions to complete their pieces of work. A  
𝜆𝜆𝑒𝑒𝑖𝑖

(𝑎𝑎) value relied on user speed to interact with the server 
application. Both 𝐶𝐶𝑒𝑒𝑖𝑖𝑓𝑓

(𝑑𝑑) and 𝐶𝐶𝑒𝑒𝑖𝑖𝑓𝑓
(𝑎𝑎) values were M-shared 

wireless-LAN latencies for sending 66B-1KB server-input 
data and 5KB-200KB server-input Java objects, respectively. 
A 𝐶𝐶𝑓𝑓

(𝑑𝑑) value halved the 𝐶𝐶𝑒𝑒𝑖𝑖
(𝑑𝑑) value as potentially using double 

I/O speed. A 𝑃𝑃𝑓𝑓
(𝑑𝑑) value reflected a shared-cache OHR in 

serving all ei in the same vicinity and had its value taken from 
[29]. A 𝐶𝐶𝑓𝑓

(𝑎𝑎) value was derived from the 𝐶𝐶𝑒𝑒𝑖𝑖
(𝑎𝑎) value by 

assuming the fog node was only twice as fast as each ei due to 
higher loads. A 𝑃𝑃𝑓𝑓

(𝑎𝑎) value relied on the 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎) one but occurred 

on cloud service functions frequently used by all ei and thus 
placed on the fog node. A 𝐶𝐶𝑓𝑓𝑓𝑓𝑖𝑖

(𝑑𝑑) value was wireless LAN 
latencies for sending/forwarding an 85B to 2MB response. A 

TABLE I 
SIMULATION PARAMETERS AND THEIR EMPIRICAL VALUES 

Var. Value Var. Value Var. Value 

M 1-20 𝐶𝐶𝑓𝑓
(𝑑𝑑) 5E-4-0.05 𝐶𝐶𝑠𝑠𝑗𝑗

(𝑑𝑑) 2.5E-4-0.025 

𝐶𝐶𝑒𝑒𝑖𝑖
(𝑑𝑑) 0.001-0.1 𝑃𝑃𝑓𝑓

(𝑑𝑑) 0.05-0.5 𝐶𝐶𝑠𝑠𝑠𝑠
(𝑑𝑑) 2E-4-1.5E-4 

𝑃𝑃𝑒𝑒𝑖𝑖
(𝑑𝑑) 0.05-0.65 𝐶𝐶𝑓𝑓

(𝑎𝑎) 0.05-0.75 𝐶𝐶𝑠𝑠𝑠𝑠
(𝑎𝑎) 0.01-0.3 

𝜆𝜆𝑒𝑒𝑖𝑖
(𝑑𝑑) 1-110 𝑃𝑃𝑓𝑓

(𝑎𝑎) 0.35-0.85 𝐶𝐶𝑠𝑠𝑠𝑠
(𝑑𝑑) 0.001-0.0015 

𝐶𝐶𝑒𝑒𝑖𝑖
(𝑎𝑎) 0.1-1.5 𝐶𝐶𝑓𝑓𝑓𝑓𝑖𝑖

(𝑑𝑑) 1E-5-0.31 𝐶𝐶𝑠𝑠𝑠𝑠
(𝑎𝑎) 0.1-3 

𝑃𝑃𝑒𝑒𝑖𝑖
(𝑎𝑎) 0.25-0.75 𝐶𝐶𝑓𝑓𝑓𝑓𝑖𝑖

(𝑎𝑎) 0.001-0.03 𝐶𝐶𝑐𝑐
(𝑑𝑑) 2.5E-4-0.025 

𝜆𝜆𝑒𝑒𝑖𝑖
(𝑎𝑎) 1 𝐶𝐶𝑓𝑓𝑓𝑓

(𝑑𝑑) 1E-4-1.5E-4 𝐶𝐶𝑐𝑐
(𝑎𝑎) 0.01-0.15 

𝐶𝐶𝑒𝑒𝑖𝑖𝑓𝑓
(𝑑𝑑) 1E-5-1.5E-5 𝐶𝐶𝑓𝑓𝑓𝑓

(𝑎𝑎) 0.01-0.3 𝐶𝐶𝑐𝑐𝑐𝑐
(𝑑𝑑) 0.001-0.0015 

𝐶𝐶𝑒𝑒𝑖𝑖𝑓𝑓
(𝑎𝑎) 0.001-0.03 𝑃𝑃𝑠𝑠𝑗𝑗

(𝑑𝑑) 0.14 𝐶𝐶𝑐𝑐𝑐𝑐
(𝑎𝑎) 0.1-3 
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𝐶𝐶𝑓𝑓𝑓𝑓𝑖𝑖
(𝑎𝑎) value equaled the 𝐶𝐶𝑒𝑒𝑖𝑖𝑓𝑓

(𝑎𝑎) one. Both 𝐶𝐶𝑓𝑓𝑓𝑓
(𝑑𝑑) and 𝐶𝐶𝑓𝑓𝑓𝑓

(𝑎𝑎) values 

were 10 times as expensive as the 𝐶𝐶𝑒𝑒𝑖𝑖𝑓𝑓
(𝑑𝑑) and 𝐶𝐶𝑒𝑒𝑖𝑖𝑓𝑓

(𝑎𝑎) values, 
respectively, due to the congestion of the Internet connection 
between the fog node and the CDN as revealed by a traceroute 
command. 𝑃𝑃𝑠𝑠𝑗𝑗

(𝑑𝑑) was the OHR of a shared LRU cache and also 

came from [29]. A 𝐶𝐶𝑠𝑠𝑗𝑗
(𝑑𝑑) value was twice lower than the 𝐶𝐶𝑓𝑓

(𝑑𝑑) 
value as exploiting sophisticated method and platform. Both 
𝐶𝐶𝑠𝑠𝑠𝑠

(𝑑𝑑) and 𝐶𝐶𝑠𝑠𝑠𝑠
(𝑎𝑎) values equaled the 𝐶𝐶𝑓𝑓𝑓𝑓

(𝑑𝑑) and 𝐶𝐶𝑓𝑓𝑓𝑓
(𝑎𝑎) ones due to 

symmetric Internet bandwidth. 𝐶𝐶𝑠𝑠𝑠𝑠
(𝑑𝑑), 𝐶𝐶𝑐𝑐𝑐𝑐

(𝑑𝑑), 𝐶𝐶𝑠𝑠𝑠𝑠
(𝑎𝑎), and 𝐶𝐶𝑐𝑐𝑐𝑐

(𝑎𝑎) 
values were identical and 10 times as costly as the 𝐶𝐶𝑓𝑓𝑓𝑓

(𝑑𝑑) value 
due to the origin server was further away from the edge than 
the fog node. A 𝐶𝐶𝑐𝑐

(𝑑𝑑) value equaled the 𝐶𝐶𝑠𝑠𝑗𝑗
(𝑑𝑑) one owing to no 

I/O optimization but lower utilization. A 𝐶𝐶𝑐𝑐
(𝑎𝑎) value was 5 

times lower than the 𝐶𝐶𝑓𝑓
(𝑎𝑎) value. In addition, to derive the 

OHRs of cloud caches, we multiplied each of 𝑃𝑃𝑒𝑒𝑖𝑖
(𝑑𝑑), 𝑃𝑃𝑓𝑓

(𝑑𝑑), and 

𝑃𝑃𝑠𝑠𝑗𝑗
(𝑑𝑑) of the LRU caches by the factor of 1.10 as suggested by 

our previous empirical results in [29]. 
𝔼𝔼c was finally calculated by letting edge devices 

independently generate request streams for one second, a CDN 
employ noncooperative surrogate servers (i.e., N = 1) as in a 
commercial CDN [10], and a fog node be isolated instead of 
federated. Herein, we carried out the serial scheme of the 
model. For any ranging values, we used their arithmetic 
means.  

B. Results and Findings 
Fig 2 compares cloud-service response times based on 

varied M values. Though all of the strategies imposed the 
quadratic growth of response times with respect to M, the 
cloud cache with and without FGR strategies outperformed the 
LRU cache one for every M value and even by far when M 
notably increased. To be more precise, the response-time 
growth rates (𝑑𝑑

𝔼𝔼𝑐𝑐

𝑑𝑑𝑑𝑑
) of LRU cache, cloud cache, and cloud-

cachewith-FGR strategies were represented by 
3.2162M+3.2336, 2.8812M+3.2863, 2.8750M+2.4719, 
respectively. This finding serves as the practical design 
guideline of edge device density per fog node.  

Fig 3 shows time portions constituting each strategy’s 
response time when M = 1. Both LRU-cache and cloud-cache 
strategies yielded the same time spends in descending order : 
cloud response (8), fog node response (4), CDN-to-cloud 
transfer (7), edge device response (2), CDN response (6), fog-
to-CDN transfer (5), and edge-to-fog transfer (3). With the 
cloud-cache-with-FGR strategy, the order of time spends came 
out the same as the others except for the edge device response 
and the CDN-to-cloud transfer. This was because not only 
some application object requests were early responded by 
FGR at the edge (thus raising the edge-device response time) 
but also the FGR cut down the number of application object 
requests processed at the cloud (thus lessening the CDN-to- 
cloud transfer time). In overall, the cloud-cache-with-FGR 
strategy defeated the LRU cache one by 23.85%. 

Fig 4 breaks down time fragments when M was raised to 20. 
Obviously, cloud response took the majority time portions. An 
overall cloud-service response time improved by 13.37% 
when the cloud-cache-with-FGR strategy contributed instead 
of the LRU one. A response time gap between the cloud cache 
strategy and the cloud-cache-with-FGR one became narrower 
than that of Fig 3. This was because more workloads were 
shifted to the high-latency cloud layer. Not showed here, we 
also found through our experiment that a fundamental 

 
Fig. 2.  Cloud service response time. 

 
Fig. 3.  Cloud-service response-time anatomy for 1 edge device. 

 
Fig. 4.  Cloud-service response-time anatomy for 20 edge devices. 
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observation in [31], the greater fallback requests to higher-
level caches the longer response times, would not be true if the 
higher levels were more powerful such as fast processing 
power, high-speed I/O, and wider network bandwidth. 

VI. CONCLUSION 
This paper proposes a pair of cloud cache-based 

approaches, cloud caches and cloud caches with FGR, to 
improve cloud-service response times in cloud-CDN-fog-edge 
hierarchy. They are evaluated by using a novelly unified cost-
performance model to compare temporal cost with pure LRU 
cache approach. Since the cloud caches deliver near-optimal 
OHR, faster response times can be expected than the LRU 
caches. Furthermore, we point out an architectural opportunity 
to optimize edge computing with FGR to reduce application 
response times and cloud and fog workloads. Compared to a 
traditional LRU cache, cloud cache together with FGR 
accelerate cloud-service response time by 23.85% for a single 
edge device and 13.37% for 20 edge devices. The response 
time increases of LRU cache and cloud-cache-with-FGR 
strategies are 3.2162M+3.2336 and 2.8750M+2.4719, 
respectively.  
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