Vol.11/No.2 (2019)

INTERNETWORKING INDONESIA JOURNAL 9

Temporal Acceleration for Cloud-CDN-Fog-Edge
Hierarchy by Leveraging Proximal Object Replicas

Thepparit Banditwattanawong and Masawee Masdisornchote

Abstract—A classical requirement to reduce network latency
drives paradigm shifts from cloud computing together with
content delivery network to fog computing, and edge computing.
These paradigms practically co-exist in a multi-tier structure.
This paper presents novel approaches for accelerating the cloud-
service response times of a cloud-CDN-fog-edge layered structure
by means of hierarchical cloud caches and fine-grained
replication. We also propose a unified cost-performance model
that enables both temporal and monetary cost evaluation. We
leverage the model to quantify the temporal effectiveness of the
approaches in comparison with a classical LRU one. Results
show that, when deploying in conjunction with the fine-grained
replication, cloud caches significantly improve the overall
response times up to 23.85%. A cloud layer is found to contribute
most to the response times. Regardless of selected approaches,
another finding is that the response times are the quadratical
functions of the number of edge devices.

Index Terms—cloud optimization, fog node, edge device,
partial replication, browser cache

I. INTRODUCTION

N the simplest use case of cloud computing services, edge

devices including smart/loT end devices are programmed to
access origin servers on clouds. Since the cloud services are
highly network dependent, a rudimentary problem cloud service
consumers encounter is delayed response times. Content delivery
network (CDN) [1], fog computing [2], and edge computing [3]
are actively researched to mitigate user perceived latencies by
placing data stores and computation as near as the consumers.
Consequently, production use cases seriously employ the CDN,
fog computing, and edge computing to minimize cloud-service
response costs from end user perspective. The response costs are
generic and can be specialized to either cloud-service response
times or cloud-data-out monetary charges. The focus of this paper
is the former cost form.

The cloud-service response times can be significantly
improved by means of caching. Nowadays, the edge devices
ubiquitously come with HTTP client capabilities, which include
browser caches [4]. The notion of caches also recently appear in
fog nodes [5]. All caching mechanisms of edge devices, fog
nodes, and CDNs are however so classical that only an object hit

Manuscript received November 1, 2019.

T. Banditwattanawong is with the Department of Computer Science,
Faculty of Science, Kasetsart University, Jatujak, Bangkok, 10900 Thailand
(e-mail: thepparit.o@ku.th).

M. Masdisornchote is with the School of Information Technology,
Sripatum University, Jatujak, Bangkok, 10900 Thailand (e-mail:
masawee.ma@spu.ac.th).

rate (OHR) is an optimization key. Our experience [6] suggests
that the best OHRs need not lead to the lowest costs. In other
words, we found in [6] that the classical caches failed to
optimally address the fundamental problems of cloud service
accesses: the expensive and slow downloading of big objects
such as video streams, disk images, electronic documents, high-
resolution multimedia contents, and so on. Alternative to the
classical caches is cloud cache [6], which is specifically
optimized for both temporal and monetary cost saving.

The contributions of this paper are twofold. The paper
firstly proposes a simple but sophisticated method to improve
cloud-service response times in cloud-CDN-fog-edge layered
environments by using a hierarchical cloud-cache architecture
equipped with fine-grained replication. The architecture is
subsequently evaluated by leveraging our novel unified-cost-
performance model in comparison with the classical caches.

1. RELATED WORK

A. Content Delivery Network

CDNs [1], [7] improve web scalability via the network of
surrogate servers (aka edge servers and cache servers) that
offloads an origin server by delivering objects on its behalf. The
surrogate servers are reverse caching proxies strategically placed
across a CDN provider’s distributed data centers, Internet
exchange points (IXPs), and points of presence (PoPs) to improve
user-perceived round-trip times. Similar to the traditional CDNs,
cloud CDNs [8] have surrogate servers located across globally-
distributed cloud-data centers and PoPs. When an HTTP request
to a target cloud server from a client is sent to a CDN due to both
the client’s and a client-side proxy’s cache misses, the CDN’s
request routing infrastructure (RRI) maps the request to the
topologically closest surrogate server [9]. If a cache miss occurs
and the CDN is noncooperative of its kind [10], such a surrogate
will directly contact the target cloud server. Otherwise the
cooperative surrogate will use ICP protocol [11], [12] to contact
its sibling surrogate [13]. If all siblings in the same deployment
[14] (aka edge cluster [15]) yield cache misses, the surrogate will
forward the request to the cloud server [7], [13]. Nevertheless,
both traditional and cloud CDNs focused on OHR by
employing LRU variants [9], [16], [17].

Among CDN-performance modeling efforts, [18] analyzed
mesh cache-server performance through both cache
replacement and traffic models. A CDN utility in conjunction
with surrogate server utilization were used in [19] as a CDN
performance metric. [20] utilized a deep recurrent neural

ISSN: 1942-9703 / CC BY-NC-ND QIOLEIS)

10 INTERNETWORKING INDONESIA JOURNAL

network to find out a reach rate as the key performance metric
of CDN.

B. Fog Computing

Officially defined by [2], fog computing is a layered model
enabling low-latency accesses to cloud computing resources
by decentralizing storage, data processing, and computing
service into fog nodes. The fog nodes (aka cloudlets) reside
between smart/loT edge devices and centralized cloud
services. The fog nodes are either physical or virtual gateways
or servers and either isolated or federated that provide data
management and communication services. Like CDN, fog
computing is not a mandatory layer to support the interaction
between the cloud services and the edge devices.

Caching was increasingly exploited in fog [5], [21], [22].
They however aimed for OHR through either a proprietary
cache eviction policy or a new peer-to-peer cache selection
scheme.

As for fog performance modeling, [23] modeled average
round-trip time and energy consumption. A service latency
model in [24] was based on transmission and processing
latencies to contrast fog computing and cloud computing
suitability in 10T context.

C. Edge Computing

Edge computing is a peripheral layer encompassing
network-accessible edge devices to provide local computing to
individual users [2]. Edge devices such as smart phones, smart
watches, smart tablets, and various 10T end devices are
capable of HTTP-based accesses to distant cloud services via
web browser engines. The web browsers, operating in
nonprivate mode, conventionally utilize two main types of
small memory caches and disk caches [4]. The memory caches
ignore almost all HTTP cache headers and stores objects only
during session lifetimes. On the other hand, the disk caches
completely obey HTTP cache protocol and are thus so
persistent that allow object reuses across multiple sessions.

The web browsers’ disk caches promote OHRs by means of
either LRU or a proprietary algorithm based on object reuse
and age [25], [26].

D. Cloud Cache

Cloud cache [27] is a client-side HTTP cache establishing
on a fact that small objects become no longer costly to
download in cloud environments wherein big object
population keeps increasing. Therefore, the cloud cache is
designed to optimize cost saving ratio (CSR) rather than OHR
by favoring big objects to persist in the cache. Cloud caches
employ either of the following two cache replacement
policies. CLOUD [6] is a profit-function based policy
supporting federated clouds with nonuniform data-out
monetary charges. The other policy, SMFD [28], [29], is a-
priori request-distance based policy that universally attains
near-optimal CSRs and OHRs at the same time. The cloud
caches’ admission controls usually follow a compulsorily-
caching admission scheme realized by CLOUD or SMFD. A
selectively-caching admission scheme is also allowed via

SMFD*, the variant of SMFD allowing optional eviction. The

BANDITWATTANAWONG ET AL.

cloud caches’ coherence simply relies on a well-established
HTTP cache coherence protocol [30]. Similar to hierarchical
web caches [31], cloud caches can be layered to match the
hierarchical nature of the Internet consisting of ISP-level and
enterprise-level shared cloud caches as well as web browser-
level cloud caches [6].

E. Web Cache Architecture Modeling

In [32], [33], not only the network but also requested
document models of hierarchical and distributed web caches
were presented. [34] modeled a hierarchical web-cache net-
work by using probabilistic flowcharts. All of these models
were however aware of neither local web-browser caches nor
application replication.

I1l. ACCELERATED ARCHITECTURE

A production use case wherein edge devices access remote
cloud services with the intermediate assistance of both CDN
and fog node in a hierarchical tree topology is illustrated in
Fig 1. This cloud-CDN-fog-edge architecture allows us to
naturally overlay a cloud cache hierarchy to improve the cloud
service’s response times. The architecture is described now.

When an edge device dispatches a data object request
(realized by an HTTP GET method, etc.) to a cloud origin
server where target data is provided, the request is first
checked in the edge device’s web-browser cloud cache. If a
cache miss occurs, the request will be redirected to a nearby
fog node’s cloud cache. If the fog-node cloud cache results in
a cache miss, the request will be re-routed to a cloud-cache
based CDN. Any cache miss at the CDN will result in the
request routed to the cloud origin server. A reply from the
origin server will be returned to the edge device via the CDN
and the fog node, respectively, and stored in the cloud caches
of the CDN, the fog node, and the edge devices.

On the other hand, when an edge device dispatches an
application object request (in the form of an HTTP POST
method, etc.) to the cloud service, the request will be

13‘.
surrogate B,
server (s;)

Application
request
response

Fig. 1. Cloud cache hierarchy along cloud-CDN-fog-edge architecture.

Vol.11/No.2 (2019)

processed within the edge device itself if fine-grained
replication is locally deployed and the requested service’s
object replica is locally available. Basically, the fine-grained
replication (FGR) incrementally and partially replicate a Java
server application (implementing the cloud service) for local
execution on Java-based devices (e.g., Android). To achieve
the FGR, SOOM middleware [35] that enables partial and
incremental replication and consistency maintenance is
required. In Fig 1, fine-grained replicas are present in all edge
devices. If the request cannot be served by the replicas, the
request will be routed to a fog node. If the fog node offers no
cloud service function that serves the service request, the
request will be further routed to the cloud service bypassing
CDN. Any response from the cloud service will be returned
through the CDN then the fog node to the edge device.

IV. UNIFiED CosT PERFORMANCE MODEL

This section analyzes the generic-cost-performance model
of the accelerated architecture in Fig. 1. The resulting model is
applicable to both temporal and monetary costs incurred by
any number of edge devices making requests to a cloud
service through a single isolated fog node and any number of
CDN surrogates. According to the architecture, the expected
cloud-service response-cost (Ec) of a data- and/or application-
request aggregation (o) generated by edge devices within a
time unit is defined as

[Ec = CePese
+Cet (1—Pe) Aet
+P¢(C Aef +Credre)
+Crs(1—Pr) At (1)

+Ps (Csﬂfs + (Csf + Cfe)ﬂse)

+ Csc(lf Ps)ﬂsc
+Pe(Celse + (Ces + Csf + Cre) Ace)

where Pe is a probability ¢ will be purely served within the
edge devices, Ce is a cost per request the edge devices locally
respond o, Ae is a rate o is generated at the edge devices, Cet
is a transfer cost per request from the edge layer to an isolated
fog node, Zes is the rate of o subset falling back from the edge
layer to the fog node because requested objects are
unavailable in the edge devices (i.e., cache misses), Ps is a
probability the o subset (i.e., fallback requests) will be
responded at the fog node, Cr is a response cost per
request at the fog node, Cre is a cost a response is sent from
or forwarded by the fog node to the edge, A is the rate of
responses to the edge by the fog node, Css is a transfer cost
per request from the fog node to a CDN surrogate, Afs is
the rate of requests falling back from the fog node to the
CDN surrogate, Ps is a probability the fallback requests will
be responded at the CDN, C; is a response cost per request
at the CDN, Cg is a cost a response is sent from or
forwarded by the CDN to the fog node and the edge
respectively, As is the rate of responses by the CDN toward
the edge, Csc is a transfer cost per request from the CDN

INTERNETWORKING INDONESIA JOURNAL 11

to a cloud origin server, s is the rate of requests falling back
from the CDN to the origin server, P is a probability the
fallback requests will be eventually processed by the origin
server and equals 1 if the server is available when the requests
arrive, Cc is a cost the origin server responds each request, Ccs
is a cost a response is sent back from the origin server to the
edge via the CDN and the fog, and Ac. is the rate of responses
by the origin server.

Remark that processing costs to evaluate cache misses at
every cache level, the costs of both response forwarding
decision and missing object caching at the CDN and the fog
node, and the costs of both response displaying and
missing object caching at the edge are neither significant
nor in-line in cloud-service response times, thus omitted.
Moreover, since the response cost is to be measured within a
single time unit, an assumption that cached objects do not
expire meanwhile applies. Such an assumption is supported by
[36] : within much longer time frame 3 weeks, 95% of
requests originating at mobile devices can be served by an
unconditional HTTP GET method. In other words, objects
requested by the edge mostly last long.

Since the edge devices can make requests to both data and
application objects (hopefully served by cloud caches and fine-
grained replicas, respectively) to the cloud service, the cost
components of (1) are derived one by one.

An edge response cost incurred within the time unit equals

€= i, max (CLOPL 0, CLOPAD))
where notations (d) and (a) distinguish data object requests and
application object requests and the total number of edge

devices is M. Pe(id) and Pe(ia) are a data OHR and an

application OHR, respectively, at e. As both data and
application object requests are executed concurrently by
multiprocessing computer devices, the max function is
utilized.

An edge-to-fog request transmission cost is

Cop(L-P)Aer = T, (€S20 = PXO) + ¢ (1 = PSH2D). (3)

Note that costs arising at the edge devices and between the
fog node and the edge devices are serial in the default model
(i.e., an overall cost paid by all M) to project the entire-system
response cost of M devices. These serial costs can
alternatively be summarized into an average, min, or max
value to reflect a response cost an individual edge device
undergoes.

At the isolated fog node, a fog response cost is

PH(CpAey + Crelye) = max (Cf(RO (1~ P;f>),1§)'>
f\~f"ef fe’tfe) =
PP @3N, (1 P
+BO%M - P2 4)

+ BT Ga (L= PO

ISSN: 1942-9703 / CC BY-NC-ND QIOLEIS)

12 INTERNETWORKING INDONESIA JOURNAL

where P}(d) is a data OHR and Pf(a) is a probability to find the
requested functional objects of the cloud service running
within the fog node.

A fog-to-CDN request-transfer cost is

Crs(1- Py = G0 (1= B B, (1 - AO)AY

e
+60 (1= BT (1 - PN,)

Let N be the number of cooperative surrogate servers, a
CDN response cost is

Ps(Cs/lfs + (Csf + Cfe)/lse) =

d d d d d
s OCS0 (1) B (1 - RO

€

+P I A (-) S (-)Y (6)
+L B (1= BO)BIL 6 (1 - B

where 3, P is an overall data OHR at the CDN. If the

surrogate servers are noncooperative, N is simply set to 1 in
(6)-(8). Note that the CDN does not process application object
requests.

A CDN-to-cloud request-transfer cost is
Cocl - P)se = €2 (1 = 20, RS (1 = B B, (1 = P2
+6 (1= BT (1 - RS ™

Lastly, let Pc be 1 and the origin server responds or
acknowledges every request. A cloud response cost, including
the cost of transmitting responses back to the edge devices, is

Pc(Cc/-{sc + (Ccs + Csf + Cfe)ﬂ-ce) =

¢ -3 PO - BT, (1- RN,
max c@c1 — p@yyM (1 _ p@);@
c (f)Zizl(e) e

d d d d d d d
+C L+ P+ 3 0 - B, PO (1 - BO) B, (1 - PO

e; €

+& + P + 2, 2 (1- PO M, (1 - PSP (8)

V. EVALUATION

We evaluated our architecture acceleration by enlisting the
cost performance model based on the scenario in Fig 1.

A. Configuration

We simulated the architecture that utilized three
acceleration strategies one by one to speed up cloud-service
response times as follows.

e LRU cache : The CDN, fog, and edge layers totally used

LRU caches.
e Cloud cache : The CDN, fog, and edge layers uniformly
employed cloud caches.
Cloud cache with FGR : The CDN, fog, and edge layers were
equipped with cloud caches, and the edge layer additionally

BANDITWATTANAWONG ET AL.

TABLE I
SIMULATION PARAMETERS AND THEIR EMPIRICAL VALUES
Var. Value Var. Value Var. Value
M 1-20 i | se4005 | € | 25640025
¢ | ooo101 | P9 | 00505 | P |2E-4-15E4
e f sf
PY | 005065 Cf(“) 0.05-0.75 CS(]‘P 0.01-0.3
13
(d)) (a) ~ (@) N
g, 1-110 P 035085 | @ |0001-00015
¢ o1as | ¢ | 1Es03 | @ 0.1-3
L
P | 02s01s | [| 0001003 | @ |25E-40.025
L L
/1,(;,‘) 1 Cf(f) 1E-4-15E-4 Cc(a) 0.01-0.15
L
¢l | 1e-5-1565 ¢ | o003 | ¢@ |o0.001-00015
L
Ce(“f) 0.001-0.03 PS(].d) 0.14 c@ 0.1-3
L

employed FGR.
The simulation relied on model parameter values in Table I.
The values were estimated by using various practical tools and

previous empirical results [34], [35], [37], [38]. We measured
the average Pe(id) value of each e by using a web browser’s
LRU-OHR extension. M was limited to 20 to prevent
overloading the only fog node and end-to-end network-

bandwidth saturation. Ce(f) and /15;?) values for every e were

captured by using [38] when users loaded web pages causing
one or more requests for each web page's embedded object(s).
The unit of 1 is requests per sec. Experience from [35]
suggested Céf), Pe(ia), and /1,(;:) values for a Java-enterprise
cloud-server application (implemented with JBoss Enterprise
Application Platform, for example) running on an off-premise
private-cloud server. The application consisted of both
replicable and database-accessing nonreplicable portions. A

Ce(lf‘) value was slightly larger than a Céid) value as invoking
the application caused the loading of several dependent
modules. A Pe(ia) range was higher but narrower than that of

d - .
Pe(i) as, based on our experience, most users routinely

accessed a small and repeated set of server application
functions to complete their pieces of work. A

/15;? value relied on user speed to interact with the server

application. Both Ce(idf) and Ce(ff) values were M-shared

wireless-LAN latencies for sending 66B-1KB server-input
data and 5KB-200KB server-input Java objects, respectively.

A Cf(d) value halved the Ce(lfi) value as potentially using double

I/O speed. A Pf(d) value reflected a shared-cache OHR in
serving all e; in the same vicinity and had its value taken from
[29]. A Cf(a) value was derived from the Ce(f) value by
assuming the fog node was only twice as fast as each e due to
higher loads. A P}(a) value relied on the Pe(ia) one but occurred
on cloud service functions frequently used by all e; and thus
placed on the fog node. A Cf(gi) value was wireless LAN

latencies for sending/forwarding an 85B to 2MB response. A

Vol.11/No.2 (2019)

Ce) value equaled the ¢ one. Both ¢’ and [values

fei €
were 10 times as expensive as the Ce(:if) and Ce(ff) values,

respectively, due to the congestion of the Internet connection
between the fog node and the CDN as revealed by a traceroute

command. Ps(jd) was the OHR of a shared LRU cache and also

came from [29]. A Cs(f) value was twice lower than the Cf(d)
value as exploiting sophisticated method and platform. Both
P and ¢ values equaled the C5” and C5” ones due to

symmetric Internet bandwidth. ¢, ¢, ¢, and ¢*

values were identical and 10 times as costly as the Cf(f) value
due to the origin server was further away from the edge than
the fog node. A Cc(d) value equaled the Cs(f) one owing to no

I/0 optimization but lower utilization. A Cc(a) value was 5
times lower than the Cf(“) value. In addition, to derive the

OHRs of cloud caches, we multiplied each of Pe(id), Pf(d), and

Ps(jd) of the LRU caches by the factor of 1.10 as suggested by

our previous empirical results in [29].

Ec was finally calculated by letting edge devices
independently generate request streams for one second, a CDN
employ noncooperative surrogate servers (i.e.,, N = 1) asin a
commercial CDN [10], and a fog node be isolated instead of
federated. Herein, we carried out the serial scheme of the
model. For any ranging values, we used their arithmetic
means.

B. Results and Findings

Fig 2 compares cloud-service response times based on
varied M values. Though all of the strategies imposed the
quadratic growth of response times with respect to M, the
cloud cache with and without FGR strategies outperformed the
LRU cache one for every M value and even by far when M
notably increased. To be more precise, the response-time

growth rates (Z%") of LRU cache, cloud cache, and cloud-

cachewith-FGR strategies were represented by
3.2162M+3.2336, 2.8812M+3.2863, 2.8750M+2.4719,
respectively. This finding serves as the practical design
guideline of edge device density per fog node.

Fig 3 shows time portions constituting each strategy’s
response time when M = 1. Both LRU-cache and cloud-cache
strategies yielded the same time spends in descending order :
cloud response (8), fog node response (4), CDN-to-cloud
transfer (7), edge device response (2), CDN response (6), fog-
to-CDN transfer (5), and edge-to-fog transfer (3). With the
cloud-cache-with-FGR strategy, the order of time spends came
out the same as the others except for the edge device response
and the CDN-to-cloud transfer. This was because not only
some application object requests were early responded by
FGR at the edge (thus raising the edge-device response time)
but also the FGR cut down the number of application object
requests processed at the cloud (thus lessening the CDN-to-
cloud transfer time). In overall, the cloud-cache-with-FGR
strategy defeated the LRU cache one by 23.85%.

INTERNETWORKING INDONESIA JOURNAL 13

200 4 @
700 ’
’
o LRU t g
T ene = ©= LRU cache 4
o 600 - "
) -y
a R 1 =----Cloud cache GI ¢
= Jlo.rJ 11 L
P

=== Cloud cache and FGR P

ervice response

Cloud-s

> 7 8 9 1011121314151617 1819 20
Number of edge devices

Fig. 2. Cloud service response time.

5.00
m Equation|(2)
4.50 +
)
¥ 1.00 4 Equation(3)
=
§ 3.50 1 m Equation(4)
& 3.00 4
Q Equation(5)
o 2.50 4
E['Z
Y 200 4 Equation(g)
g 1.50 o ; Equation(7)
k=i
5 e Equation(&)
- L]
0ol N
LRU cache Cloud cache Cloud cache and
FGR
Fig. 3. Cloud-service response-time anatomy for 1 edge device.
700.00 4 W Equation (2)
Eﬁ 600.00 4 | W Equation (3)
: |
E _ uatian (4}
= 500.00 o) m Equation (4)
@
S 400.00 4] Equation (5)
|
9__* 300.00 ‘ m Equation (B)
@
b Equation (7)
2 200.00 4 : HEERENLE
3
= ‘ B Equation [8)
~ 100.00 - | mha s
0.00 4 e — —
LRU cache Cloud cache Cloud cache and
FGR

Fig. 4. Cloud-service response-time anatomy for 20 edge devices.

Fig 4 breaks down time fragments when M was raised to 20.
Obviously, cloud response took the majority time portions. An
overall cloud-service response time improved by 13.37%
when the cloud-cache-with-FGR strategy contributed instead
of the LRU one. A response time gap between the cloud cache
strategy and the cloud-cache-with-FGR one became narrower
than that of Fig 3. This was because more workloads were
shifted to the high-latency cloud layer. Not showed here, we
also found through our experiment that a fundamental

ISSN: 1942-9703 / CC BY-NC-ND QIOLEIS)

14 INTERNETWORKING INDONESIA JOURNAL

observation in [31], the greater fallback requests to higher-
level caches the longer response times, would not be true if the
higher levels were more powerful such as fast processing
power, high-speed 1/0O, and wider network bandwidth.

VI. CONCLUSION

This paper proposes a pair of cloud cache-based
approaches, cloud caches and cloud caches with FGR, to
improve cloud-service response times in cloud-CDN-fog-edge
hierarchy. They are evaluated by using a novelly unified cost-
performance model to compare temporal cost with pure LRU
cache approach. Since the cloud caches deliver near-optimal
OHR, faster response times can be expected than the LRU
caches. Furthermore, we point out an architectural opportunity
to optimize edge computing with FGR to reduce application
response times and cloud and fog workloads. Compared to a
traditional LRU cache, cloud cache together with FGR
accelerate cloud-service response time by 23.85% for a single
edge device and 13.37% for 20 edge devices. The response
time increases of LRU cache and cloud-cache-with-FGR
strategies are 3.2162M+3.2336 and 2.8750M+2.4719,
respectively.

REFERENCES

[1] Cloudflare, Inc. (2019) What is a cdn? [Online].
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/

[2] M. lorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and C.
Mahmoudi, “Fog computing conceptual model,” National Institute of
Standards and Technology, Tech. Rep. Special Publication (NIST SP) -
500-325, March 2018.

[3] C. Mahmoudi, A. Battou, and F. Mourlin, “Formal definition of edge
computing: An emphasis on mobile cloud and iot composition,” in
Proceedings of The Third IEEE International Conference on Fog and
Mobile Edge Computing, June 2018.

[4] D. Gash. (2019) Http caching. [Online]. Auvailable:
https://developers.google.com/web/fundamentals/performance/getstarted
/httpcaching-6

[5] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031-5044, May 2019.

[6] T. Banditwattanawong, M. Masdisornchote, and P. Uthayopas,
“Multiprovider cloud computing network infrastructure optimization,”
Future Generation Computer Systems, vol. 55, pp. 116 — 128, 2016.

[7] A. Vakali and G. Pallis, “Content delivery networks: status and trends,”
IEEE Internet Computing, vol. 7, no. 6, pp. 68-74, Nov 2003.

[8] Google Cloud. (2019) Cloud cdn documentation. [Online]. Available:
https://cloud.google.com/cdn/docs/

[9]1 A. Sundarrajan, M. Feng, M. Kasbekar, and R. K. Sitaraman, “Footprint
descriptors: Theory and practice of cache provisioning in a global cdn,”
in Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, ser. CONEXT ’17. New
York, NY, USA: ACM, 2017, pp. 55-67.

[10] M. Pathan and R. Buyya, “A taxonomy of cdns,” in Content Delivery
Networks, Lecture Notes in Electrical Engineering, Jan 2008, pp. 33-77.

[11] Akamai. (2019) Akamai developer : Caching. [Online]. Available:
https://developer.akamai.com/article/content-caching

[12] D. Wessels and K. Claffy. (1997) Internet cache protocol (icp), version
2. [Online]. Available: https://tools.ietf.org/html/rfc2186

[13] ——. (1997) Application of internet cache protocol (icp), version 2.
[Online]. Available: https://tools.ietf.org/html/rfc2187

[14] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a
platform for high-performance internet applications.” Operating Systems
Review, vol. 44, pp. 2-19, Jan 2010.

[15] Akamai. (2019) Content caching. [Online].
http://developer.akamai.com/legacy/learn/Caching/Content
Caching.html

Available:

Auvailable:

BANDITWATTANAWONG ET AL.

[16] G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi, and D.
Tsigkari, “Access-time aware cache algorithms,” in 2016 28th
International Teletraffic Congress (ITC 28), vol. 01, 2016, pp. 148-156.

[17] Amazon Web Services. (2019) Measuring cloudfront performance.
[Online]. Available: https://aws.amazon.com/th/blogs/networking-
andcontent-delivery/measuring-cloudfront-performance/

[18] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 1, no. 3, pp. 12:1-12:28, May 2016. [Online].

[19] S. Ullslam, H. A. Khattak, F. F. Qureshi, V. Chang, and J. M. Pierson,
“Leveraging utilization as performance metric for cdn enabled internet
of things,” Measurement, 2019.

[20] W. Zhang, Z. Lu, Z. Wu, J. Wu, H. Zou, and S. Huang, “Toy-iot-
oriented data-driven cdn performance evaluation model with deep
learning,” Journal of Systems Architecture, vol. 88, pp. 13 — 22, 2018.

[21] F.Jiang, Z. Yuan, C. Sun, and J. Wang, “Deep g-learning-based content
caching with update strategy for fog radio access networks,” IEEE
Access, vol. 7, pp. 97 505-97 514, 2019.

[22] Z. Li, J. Chen, and Z. Zhang, “Socially aware caching in d2d enabled
fog radio access networks,” IEEE Access, vol. 7, pp. 84 293-84 303,
2019.

[23] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H.
Abawajy, “Fog of everything: Energy-efficient networked computing
architectures, research challenges, and a case study,” IEEE Access, vol.
5, pp. 9882-9910, 2017.

[24] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of internet of things,” IEEE Transactions
on Cloud Computing, vol. 6, no. 1, pp. 46-59, Jan 2018.

[25] Mozilla Developer Network. (2019) Browser storage limits and
evictioncriteria. [Online]. Available: https://developer.mozilla.org

[26] The Chromium Projects. (2019) Disk cache. [Online]. Available:
https://www.chromium.org/developers/design-documents/networkstack/
disk-cache

[27] T. Banditwattanawong, “From web cache to cloud cache,” in Advances
in Grid and Pervasive Computing, ser. Lecture Notes in Computer
Science, R. Li, J. Cao, and J. Bourgeois, Eds. Springer Berlin /
Heidelberg, 2012, vol. 7296, pp. 1-15.

[28] ——, “The optimality and complexity of offline cache replacement
policies for nonuniform objects,” International Journal of Future
Computer and Communication, vol. 7, no. 3, pp. 63-67, Sep 2018.

[29] ——, “The empirical discovery of near-optimal offline cache
replacement policies for nonuniform objects,” in Recent Advances in
Information and Communication Technology 2018. Springer
International Publishing, 2019, pp. 286-296.

[30] M. N. R. Fielding and J. Reschke. (2014) Hypertext transfer protocol
(http/1.1): Caching. [Online]. Available:
http:/www.ietf.org/rfc/rfc7234.txt

[31] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J.
Worrell, “A hierarchical internet object cache,” in Proceedings of the
1996 Annual Conference on USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 1996, pp. 13-13.

[32] P. Rodriguez, C. Spanner, and E. W. Biersack, “Analysis of web caching
architectures: hierarchical and distributed caching,” IEEE/ACM
Transactions on Networking, vol. 9, no. 4, pp. 404-418, Aug 2001.

[33] R. E. Abdouni Khayari, A. Musovic, A. Lehmann, and M. B"ohm, “A
model validation study of hierarchical and distributed web caching
model,” in Proceedings of the 2010 Spring Simulation Multiconference.
Society for Computer Simulation International, 2010, pp. 98:1-98:6.

[34] C. Chiang, M. Ueno, M. T. Liu, and M. E. Muller, “Modeling web
caching schemes for performance studies,” in Proceedings 2000
International Conference on Parallel Processing, 2000, pp.243-250.

[35] T. Banditwattanawong, S. Hidaka, H. Washizaki, and K. Maruyama,
“Soom: Scalable object-oriented middleware for cooperative and
pervasive computings,” IEICE Transactions on Communications, vol.
90-B, pp.728-741, 2007.

[36] 1. Papapanagiotou, E. M. Nahum, and V. Pappas, “Smartphones vs.
laptops: Comparing web browsing behavior and the implications for
caching,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 423-
424, Jun. 2012.

[37] Wireshark. (2019) Wireshark. [Online]. Available:
https://www.wireshark.org
[38] Google. (2019) Chrome devtools. [Online]. Awvailable:

https://developers.google.com/web/tools/chrome-devtools/

Vol.11/No.2 (2019) INTERNETWORKING INDONESIA JOURNAL

Thepparit Banditwattanawong was born in Bangkok, Thailand. He received
B.Eng. degree (Honors) in computer engineering from King Mongkut’s
Institute of Technology Ladkrabang, Thailand and M.Eng. degree from Asian
Institute of Technology, Thailand. He obtained his Ph.D. degree in informatics
from the National Institute of Informatics (NII), The Graduate University for
Advanced Studies, Tokyo, Japan.

He is currently an Assistant Professor with the Department of Computer
Science, Kasetsart University, Bangkok, Thailand. His main areas of research
interests include computer network optimization, cloud computing, and
distributed computing.

Masawee Masdisornchote was born in Bangkok, Thailand. She received B.S.
in statistics from Silpakorn university, Thailand and M.S. in information
technology from King Mongkut’s Institute of Technology Ladkrabang,
Thailand.

She is currently an Assistant Professor and the director of Business
Computer department at Sripatum University, Thailand. Her main research
area is data science.

ISSN: 1942-9703 / CC BY-NC-ND QIOLEIS)

	I. INTRODUCTION
	II. Related Work
	A. Content Delivery Network
	B. Fog Computing
	C. Edge Computing
	D. Cloud Cache
	E. Web Cache Architecture Modeling

	III. ACCELERATED ARCHITECTURE
	IV. UNIFIED COST PERFORMANCE MODEL
	V. Evaluation
	A. Configuration
	B. Results and Findings

	VI. Conclusion
	References

